Verbesserte Zufallsprozesse
Mathematica Version 10 erweitert das bereits vorhandene extensive Zufallsprozess-Framework mit neuen Prozessen, inklusive Hidden-Markov-Modellen. Hidden-Markov-Modelle werden typischerweise verwendet, um Rückschlüsse über die versteckten inneren Zustände aufgrund ihrer Emissionen abzuleiten, wie z. B. in der Spracherkennung, Computerlinguistik oder biologischen Sequenzanalyse. Das Framework für Zufallsprozesse umfasst außerdem fortschrittliche Zeitreihenprozesse und Transformationsmöglichkeiten von bestehenden Prozessen; zusätzlich deutlich verbesserte Berechnungen mit Zeitintervall-Verteilungen - der Verbindung von Zufallsprozessen zu Zufallsvariablen - oft mit dem Ergebnis, zuverlässige Rückschlüsse vom Modell auf das erwartete Verhalten des Prozesses ziehen zu können.
|
|