
Copyright © 2022 Wolfram Research, Inc.

VERSION 3.7

User’s Manual &
Reference Guide

ADDITIVE Soft- und Hardware für
Technik und Wissenschaft GmbH
Max-Planck-Str. 22b • 61381 Friedrichsdorf Tel.:
+49 6172 5905 - 134 • Fax: +49 6172 77613
http://www.additive-mathematica.de
mathematica@additive-net.de

Table of Contents
Overview ... 1
Features ... 1

2What's New in Mathematica Link for Excel ...

Working in the Wolfram Language

Getting Started .. 5
General Principles ... 8
Automating Excel ... 11
Creating Excel Functions ... 14
Creating Excel Macros ... 20

Working in Excel

Getting Started .. 24
General Principles ... 30
Working with Functions ... 32
Working with Macros ... 39
Link Management .. 42
Sharing Workbooks ... 43

Using the Clipboard

Loading the Add-In .. 44
Copying Data from Excel ... 44
Pasting Data to Excel ... 45
Fixing Problematic Data ... 46

ExcelLink Functions ... 61

Reference

Excel Worksheet Functions ... 48
Toolbar Commands ... 50
Context Commands ... 52
Keyboard Shortcuts ... 54
Data Types ... 56
Number Formats .. 60

Mathematica Link for Excel
Features

Mathematica Link for Excel consists of two main components, the ExcelLink package and the MathematicaLink add-in. These
components work together to provide full two-way connectivity between Mathematica and Excel.

ExcelLink Features

A suite of Wolfram Language functions that allow you to:

◼ Read and write data to Excel ranges

◼ Display graphics, typeset equations and formatted output in Excel

◼ Create customized Excel import and export routines

◼ Develop Excel functions in the Wolfram System

◼ Develop Excel macros in the Wolfram System

◼ A special clipboard window that allows you to easily copy and paste data between Mathematica and Excel

◼ Integrated documentation in the Mathematica Help Browser

MathematicaLink Features

◼ A set of worksheet functions that allow you to use Wolfram Language functions in Excel formulas

◼ A Wolfram Language Function Wizard to help you learn about and enter Wolfram Language functions

◼ A Wolfram Language macros window that allows you to turn Wolfram Language code into Excel macros

◼ A special clipboard window that allows you to easily copy and paste data between programs

What's New in Mathematica Link for Excel 3
New in Version 3.7.3

◼ Compatibility with Mathematica 12.2, 12.3, 13.0, 13.1

New in Version 3.7.2

◼ Compatibility with Mathematica 12.1

New in Version 3.7.1

◼ Compatablility with Mathematica 12

New in Version 3.7

◼ Compatibility with Excel 2016 (including Excel 2010 64-bit version)

Improved in Version 3.7

◼ Updated Excel UI to support Office Fluent UI

◼ Improved contextual menu support in Excel 2007 and newer to include a submenu for MathematicaLink in Excel (substitu-

ting Shift+right-click to display the Mathematica Context menu in Excel 2007 or newer)

◼ Other minor improvements and fixes

New in Version 3.6.1

◼ Compatibility with Mathematica 11

New in Version 3.6

◼ Compatibility with Mathematica 9 and 10

New in Version 3.5

◼ Compatibility with Mathematica 8.0

◼ Compatibility with Excel 2010 (including Excel 2010 64-bit version)

◼ ExcelShare function allows sharing a kernel between Excel and the Wolfram System

◼ VBA support routines: MathematicaSet, MathematicaRun and MathematicaGet

◼ Support for reading and writing Excel comments (including writing to a range using CellLabel["my comment"])

◼ Shift+click the Wolfram System Evaluate button to close link and bring up the Wolfram System connection window

◼ Shift+right-click a range to quickly display the Wolfram System Context menu without turning on Wolfram System
Contexts

2 ExcelLink

https://reference.wolfram.com/language/ref/CellLabel.html

Improved in Version 3.5

◼ Updated toolbar and menu icons

◼ Improved Wolfram System connection management (self-healing link, new connection options window)

◼ Improved handling of Wolfram System connection exceptions and evaluation interrupts

◼ Improved Wolfram System messaging (messages now returned in real time)

◼ Improved "Display Message Box" option now only applies to Print[] output

◼ Improved workbook initialization code evaluation and management

◼ Improved common multi-workbook initialization now supported using an init.m file in same directory

◼ Improved support for long-running Wolfram Language macros

◼ Improved automatic workbook relinking and add-in startup logic

◼ Other minor improvements and fixes

New in Version 3.2

◼ Compatibility with Mathematica 7.0, including Mathematica 7.0-based icons

◼ ExcelOpen, ExcelSave and ExcelDialog support for Excel 2007 .xlsx, .xlsm and .xlsb files

◼ ExcelWrite support for writing Grid[{{1, 2, 3}, {4, 5}, {6}}, opts] f.ex. ANOVATable output

◼ ExcelFormat[A:C, AutoFit] to automatically adjust column width

◼ Support for 64-bit Windows and 64-bit Wolfram System connecting to 32-bit Excel

Improved in Version 3.2

◼ Improved message print format in Mathematica 6 and 7

◼ Fixed a bug where some workbooks with macro buttons did not relink correctly

◼ Improved ExcelInstall[Visible True] method for launching visible instance of Excel

◼ Improved Wolfram Language Macros dialog method of inserting code boxes and buttons

◼ No "kernel connection closed" dialog if initialization code ends with Quit[]

◼ Other minor improvements and fixes

New in Version 3.1

◼ Compatibility with Mathematica 6

◼ Compatibility with Excel 2007

◼ Compatibility with Windows Vista

◼ Keyboard shortcuts for Excel toolbar commands

ExcelLink 3

https://reference.wolfram.com/language/ref/Print.html
https://reference.wolfram.com/language/ref/Grid.html
https://reference.wolfram.com/language/ref/Quit.html

◼ Additional Excel message–related options

◼ Restored backwards compatibility with Excel 2000

Improved in Version 3.1

◼ Improved editing of existing functions using the Wolfram Language Function Wizard

◼ Improved compatibility with workbooks originally built with version 2.x of Mathematica Link for Excel

◼ Improved printable PDF documentation

New in Version 3

◼ Display of typesetting and formatted output in Excel

◼ Creating Wolfram Language–based macros

◼ A suite of Wolfram Language functions to interact with and automate Excel

Improved in Version 3

◼ Improved set of worksheet functions allowing you to build and evaluate Wolfram Language expressions in Excel even more
easily.

◼ Increased worksheet function speed. Worksheet functions now calculate up to eight times faster.

◼ Increased worksheet function reliability. Worksheet functions are now robust enough for the most demanding spreadsheet
applications. Automated tests have performed billions of continuous evaluations without errors.

◼ Improved worksheet function error handling. Dependent evaluations are now suppressed through the use of native Excel
error codes.

◼ Improved Mathematica message handling. Messages are now displayed and stored in a nonmodal window. You can leave
this window open, scroll through multiple messages, find the source of a message and even save messages to a log file.

◼ Easier linking. If a Mathematica kernel is available on your machine, it is automatically located. The Start/End Link button
is now a more powerful Evaluate button that can be used to reevaluate a workbook; interrupt current evaluations; or, by
holding Shift, end a link without displaying a confirmation dialog.

◼ Enhanced Wolfram Language Function Wizard allows you to browse for functions by category, explore options and edit
existing formulas.

◼ Standard packages are now automatically declared, by default, and can be browsed directly within the Wolfram Language
Function Wizard. This functionality replaces the libraries dialog.

◼ Improved copying and pasting is faster and more robust. View and modify your copied data directly in the new Mathemat-
ica clipboard window, which replaces the kernel dialog. You can also type Wolfram Language expressions directly into the
clipboard, evaluate them and paste them wherever needed.

◼ Improved sharing of workbooks with others—just click Unlink in the Mathematica Options -> Workbook tab. If col-
leagues have Mathematica Link for Excel, they will be automatically prompted to relink formulas when they open your
workbook.

4 ExcelLink

Working in the Wolfram Language:
Getting Started
Loading the Package

To start using the link from inside the Wolfram Language, you must first load the ExcelLink package.

In[1]:= << ExcelLink`

The ExcelLink package provides a library of functions and symbols relating to Excel.

In[2]:= ?ExcelLink`*

ExcelLink`

Excel ExcelFilter ExcelRead ExcelTypeset

ExcelActivate ExcelForm ExcelRefresh ExcelUninstall

ExcelAddress ExcelFormat ExcelRename ExcelUnshare

ExcelBook ExcelGraphic ExcelResize ExcelWrite

ExcelBooks ExcelInsert ExcelResult ImageFormat

ExcelCalculate ExcelInstall ExcelRun MaxCharacters

ExcelCall ExcelName ExcelSave ToExcel

ExcelCheck ExcelNew ExcelSelect $ExcelDialogs

ExcelClear ExcelObject ExcelShape $ExcelDirectories

ExcelClose ExcelOffset ExcelShapes $ExcelGraphic

ExcelContext ExcelOpen ExcelShare $ExcelLink

ExcelDate ExcelOutput ExcelSheet $ExcelOutput

ExcelDelete ExcelPosition ExcelSheets $ExcelResult
ExcelDialog ExcelRange ExcelSize $ExcelShare

ExcelDirectory ExcelRanges ExcelStatus $ExcelTypeset

You can learn more about these functions and symbols by looking up its entry in the section ExcelLink Functions. You can also
access this information within the Wolfram Language's help system by looking under Installed Add-Ons.

Assigning and Retrieving Data

In[1]:= Needs"ExcelLink`"

The top-level Excel function provides an easy way to specify a location in Excel, as if it were a variable, then assigns or

retrieves data from it.

In[2]:= Excel["A1"] = "hello"

In[3]:= Excel["A1"]

Out[3]= hello

You can also clear data from the Excel location.

In[4]:= Excel["A1"] =.

ExcelLink 5

When assigning data to Excel ranges, one-dimensional data can be assigned either to single rows or single columns of cells.

In[5]:= Excel["A1:C1"] = {1, 2, 3}

In[6]:= Excel["A1:A3"] = {1, 2, 3}

Two-dimensional data can be assigned to a rectangular range of cells.

In[7]:= Excel["A1:C3"] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}

In[8]:= Excel["A1:C3"] =.

Displaying Graphics

In[1]:= Needs"ExcelLink`"

This displays a graphic in the Wolfram Language.

In[2]:= g = PlotSin[α^2], {α, -4, 4}, PlotStyle Hue[.8], Frame True

From In[2]:=

-4 -2 0 2 4

-1.0

-0.5

0.0

0.5

1.0

This displays the same graphic in Excel.

In[3]:= Excel["B3"] = g

As specified, the graphic is displayed at cell B3. This cell will serve as an anchor point for the graphic; however, you can move
it anywhere you like. You can also resize the graphic as needed.

Subsequent assignments update and redraw the existing graphic.

In[4]:= g = PlotSin[α^2], {α, -3, 3}, PlotStyle Hue[.8], Frame True

From In[4]:=

-3 -2 -1 0 1 2 3

-1.0

-0.5

0.0

0.5

1.0

In[5]:= Excel["B3"] = g

This clears the graphic associated with cell B3.

In[6]:= Excel["B3"] =.

6 ExcelLink

Displaying Expressions

In[1]:= Needs"ExcelLink`"

This defines an expression to be displayed.

In[2]:= expr = Sini Pi^22;

Here is a typeset form of the expression.

In[3]:= TraditionalForm[expr]

Out[3]//TraditionalForm=

1

2
sin2(i π)

This displays the typeset form in Excel.

In[4]:= Excel["B3"] = TraditionalForm[expr]

This clears the displayed expression associated with cell B3.

In[5]:= Excel["B3"] =.

ExcelLink 7

General Principles
Function Overview

Functions in the ExcelLink package follow the general convention:

ExcelMethod[ExcelObject[...], ...]

Four kinds of Excel objects are supported. Here is a list of the objects with some methods that apply to them.

Book: New, Open, Refresh, Save, Close

Sheet: Insert, Rename, Delete, Activate

Range: Read, Write, Clear, Resize, Offset, Filter, Select

Shape: Insert, Rename, Delete, Read, Write, Select

For detailed information on all the objects and methods provided by the ExcelLink package, see the section ExcelLink Functions.

Shorthand Notation

Objects

Most objects in Excel can be referenced directly by a unique identifier. The identifier is typically the name of an object or, in the case
of ranges, the address. If an identifier is unique among all object types, you do not need to specify what kind of object it is.

Here a range object is provided as a typed object.

ExcelRead[ExcelRange["A1:B10"]]

Here the range object is specified only by its address; the identifier implicitly identifies it as a range.

ExcelRead["A1:B10"]

You can use this type of shorthand referencing in any function that requires an Excel object.

Methods

Read and write operations are so common, a shorthand has also been provided for them, and for clearing a range.

In[1]:= Needs"ExcelLink`"

In[2]:= Excel["A1:B10"] = Table[Random[], {10}, {2}]

In[3]:= Excel["A1:B10"]

Out[3]= {{0.395543, 0.335494}, {0.934515, 0.304868}, {0.495912, 0.426754}, {0.657647, 0.398919}, {0.800834, 0.159929},

{0.216486, 0.109539}, {0.694347, 0.157112}, {0.0578395, 0.273708}, {0.750935, 0.710237}, {0.760348, 0.420566}}

In[4]:= Excel["A1:B10"] =.

8 ExcelLink

The above three lines of shorthand code are equivalent to the following.

In[5]:= ExcelWrite[ExcelRange["A1:B10"], Table[Random[], {10}, {2}]]

In[6]:= ExcelRead[ExcelRange["A1:B10"]]

Out[6]= {{0.779186, 0.105253}, {0.954368, 0.320287}, {0.383643, 0.769759}, {0.0198529, 0.0154194}, {0.887731, 0.343005},

{0.362206, 0.6165}, {0.0868974, 0.183076}, {0.14572, 0.506961}, {0.39255, 0.025964}, {0.0878807, 0.233253}}

In[7]:= ExcelClear[ExcelRange["A1:B10"]]

Notes

◼ If more than one object has the same identifier (e.g. a shape has the same name as a sheet) the identifier most likely to be
used by the calling method is returned.

Object Notation

Using full object notation can be useful when referring to an object by index, or providing context for the object. Here are a
few examples.

ExcelSheet[1]
ExcelSheet["Book1", "Sheet1"]
ExcelSheet["Book1", 1] f
ExcelRange["Report.xls", 1, "A1:D100"]

When no context is provided, the active context is assumed.

Excel object references are resolved when they are passed to a method, not before. Until then, they are just Wolfram Lan-
guage expressions representing a location in Excel.

In[1]:= Needs"ExcelLink`"

In[2]:= ExcelSheet["My Sheet"]

Out[2]= -Sheet: My Sheet-

In[3]:= ExcelRead[ExcelSheet["My Sheet"]]

ExcelRead::source : -Sheet: My Sheet- is not a valid range, shape, or sheet.

Out[3]= $Failed

If you want to see if an object reference is valid, you can do so by using the ExcelCheck function.

In[4]:= ExcelCheck[ExcelSheet["My Sheet"]]

Out[4]= False

You can return collections of objects as a list by using the plural of an object name.

In[5]:= ExcelSheets[]

Out[5]= {-Sheet: Sheet1-, -Sheet: Sheet2-, -Sheet: Sheet3-}

You can extract the name of a returned object.

In[6]:= ExcelNameFirst[ExcelSheets[]]

Out[6]= Sheet1

ExcelLink 9

You can also return the embedded context information for the objects.

In[7]:= ExcelContextFirst[ExcelSheets[]]

Out[7]= {Book1}

Expression Cells

If the Number Format of an Excel cell is set to Text, the contents of the cell are considered to be Wolfram Language expres-
sions when transferring them to the Wolfram System via the clipboard or in a macro.

For more information, see Strings in the section Data Types.

Notes

◼ Cells should be formatted as Text before entering an expression. To convert existing contents to Text, you can reenter
them manually or use the provided Expression command from the Mathematica Context menu.

◼ Expressions such as 1 /2 or -x can only be entered in cells formatted as Text. Otherwise, Excel will attempt to interpret
them as something else.

◼ When working with expression cells, all cells in the range should be formatted as Text. Partial expression ranges are not
currently supported.

◼ From the Wolfram Language, you can use the ExcelFormat function to apply or unapply Text format to a range.

Data Cells

If the Number Format of an Excel cell is anything other than Text, the cell is considered a data cell.

When transferring the contents of data cells from Excel to the Wolfram Language:

◼ Data is transferred as it is natively stored in Excel. This means, for example, all numbers will be returned as floating-point
doubles. This includes dates that are numbers with special formatting properties.

◼ When transferring Wolfram Language expressions to Excel data cells:

Nonnative expressions are converted to an equivalent Excel data type whenever possible. Expressions that do not have any

possible Excel equivalent are converted to InputForm strings.

See the section Data Types for more details.

Notes

◼ You can use the ExcelDate and ExcelForm functions to work with date values once you get them into the Wolfram

Language.

◼ Cell references in Excel-based formulas such as =EVAL(A1,A2,A3) are an exception to this rule. In this case, you must wrap
formula arguments with the provided DATA function to treat them as data cells; =EVAL("StringJoin", DATA(A2),
DATA(A3)), for example.

10 ExcelLink

https://reference.wolfram.com/language/ref/InputForm.html

Automating Excel
Opening Excel

By default, the ExcelLink package automatically connects, as needed, to an open instance of Excel. This provides easy, on-
demand connectivity. In this mode, you can open or close Excel on your own whenever you wish.

If you write Wolfram Language code that automates Excel to perform a task, you may want the Wolfram Language code to

initiate opening an instance of Excel. The ExcelInstall function provides a way of doing this.

In[1]:= Needs"ExcelLink`"

This opens a visible instance of Excel, if one is not already open.

In[2]:= ExcelInstallVisible True

Out[2]= LinkObject[

C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Binaries\ExcelLink.exe,

2, 2]

Once an Excel automation routine has been developed, you can set Visible False instead. This will open a hidden,

private instance of Excel to perform the requested tasks.

Importing Workbooks

In[1]:= Needs"ExcelLink`"

This specifies a file to import data from.

In[2]:= f = ToFileNameExcelDirectory"Link", "Examples", "Stocks.xls"

Out[2]= C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Examples\Stocks.xls

This opens the file.

In[3]:= ExcelOpenf

Out[3]= -Book: Stocks.xls-

This returns the sheets in the file.

In[4]:= ExcelSheets[]

Out[4]= {-Sheet: IBM-, -Sheet: CSCO-, -Sheet: AAPL-, -Sheet: MSFT-,

-Sheet: BLDP-, -Sheet: AIG-, -Sheet: ADP-, -Sheet: JNJ-, -Sheet: SYY-, -Sheet: WMT-}

This reads in all the data from one of the sheets.

In[5]:= data = ExcelRead[ExcelSheet["IBM"]];

This previews the first five rows of data from the sheet.

In[6]:= Take[data, 5]

Out[6]= {Date, Open, High, Low, Close, Volume, Adj. Close},

36886., 88.97, 89.53, 82.14, 85., 6.0523×106, 84.47, 36878., 88.39, 94.41, 80.07, 89., 7.6938×106, 88.45,

36871., 96.49, 98.23, 87.32, 87.81, 6.1856×106, 87.27, 36864., 96.01, 104.74, 93.13, 97., 5.5668×106, 96.4

ExcelLink 11

This defines the data in the last column.

In[7]:= adjclose = Rest[Part[data, All, -1]];

This plots the data.

In[8]:= ListPlotadjclose, Joined True, Frame True, Axes False

From In[8]:=

This closes the workbook once you are finished importing data from it.

In[9]:= ExcelClose[]

Exporting Workbooks

In[1]:= Needs"ExcelLink`"

You can provide any format to an exported workbook by referencing an existing template file.

This specifies an existing template file to use for exporting the file.

In[2]:= f = ToFileNameExcelDirectory"Link", "Templates", "Report.xls"

Out[2]= C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Templates\Report.xls

This creates the new workbook based on the template file.

In[3]:= ExcelNewf

Out[3]= -Book: Report1-

The template contains a named range that defines where to put data in the report.

In[4]:= ExcelRanges[]

Out[4]= {-Range: Trials_Range-}

It also contains a named shape to display a graphic.

In[5]:= ExcelShapes[]

Out[5]= {-Shape: Histogram Graphic-}

This simulates rolling two six-sided dice 500 times.

In[6]:= roll := Random[Integer, {1, 6}]

trials = Table[roll + roll, {500}];

12 ExcelLink

This writes the trial data to the report.

In[8]:= ExcelWrite"Trials_Range", trials

This displays a histogram to the named shape.

In[9]:= If$VersionNumber < 7, If$VersionNumber ≥ 6, Needs"Histograms`", Needs"Graphics`"

ExcelWrite"Histogram Graphic", Histogramtrials

From In[9]:=

This defines the file name for the report workbook.

In[11]:= f = ToFileNameExcelDirectory["Home"], "Autogenerated Report.xls"

Out[11]= C:\Documents and Settings\Anton\My Documents\Autogenerated Report.xls

This saves the report workbook to disk.

In[12]:= ExcelSaveActive, f

Out[12]= -Book: Autogenerated Report.xls-

This closes the workbook once you have finished exporting data to it.

In[13]:= ExcelClose[]

This cleans up by deleting the exported workbook file.

In[14]:= DeleteFilef

Closing Excel

In[1]:= Needs"ExcelLink`"

Once your automation routines are completed, you can use the ExcelUninstall function to close Excel.

In[2]:= ExcelUninstall[]

By default, ExcelUninstall only closes visible instances of Excel if no workbooks remain open. This avoids accidental data

loss. You can force a visible instance of Excel to close, even if workbooks are open, by specifying Visible True as an

option to ExcelUninstall .

ExcelLink 13

Creating Excel Functions
Defining Functions

Here is how to define a Wolfram Language function that adds two numbers.

In[1]:= addtwo[x_, y_] := x + y

Arguments for the function are specified using pattern _ indicators. The delayed assignment := operator indicates that the
body of the function is evaluated only once the values for the arguments are known.

In[2]:= addtwo[2, 2]

Out[2]= 4

The next example uses a function defined in a standard package, which you must load first.

In[3]:= If$VersionNumber ≥ 6, Needs"ComputationalGeometry`", Needs"DiscreteMath`ComputationalGeometry`"

This is an example of a function that generates a graphic.

In[4]:= triplot[n_] := PlanarGraphPlot[Table[Random[], {n}, {2}]]

The function triangulates a set of n random coordinates.

In[5]:= triplot[10]

From In[5]:= 5

2

7

8

1
10

4
3

9

6

Here is a version of the same function, written in two steps.

In[6]:= triplot[n_] :=

Module[{data},

data = Table[Random[], {n}, {2}];

PlanarGraphPlot[data]

]

14 ExcelLink

In this definition, a local variable is defined within the body of the function. The two steps within the body of the function are
separated using a semicolon. The final line of code returns the value of the function.

In[7]:= triplot[10]

From In[7]:=

8
7

2

5

9

3

1

6 4
10

Special Considerations

Usage

To help others know how to use your function, you can define a usage message.

In[8]:= triplot::"usage" = "triplot[n] plots a random triangulation of n planar points."

Out[8]= triplot[n] plots a random triangulation of n planar points.

The usage message is used by the Wolfram Language Function Wizard to automatically generate argument templates for the
function. To be fully compatible with the Wolfram Language Function Wizard, you should always use the following convention
for your usage messages.

In[9]:= f::"usage" = "f[x] does one thing. f[list] does another. f[list, x] does more."

Out[9]= f[x] does one thing. f[list] does another. f[list, x] does more.

Options

You can also define a set of default options for your functions, if needed.

In[10]:= Optionstriplot = Frame False, GridLines None

Out[10]= {Frame False, GridLines None}

ExcelLink 15

This clears the previous definition for the function, then defines it with options.

In[11]:= Cleartriplot

In[12]:= triplot[n_, opts___Rule] :=

Module{data, g, rules},

data = Table[Random[], {n}, {2}];

rules = Sequence @@ Join{opts}, Optionstriplot;

PlanarGraphPlot[data, rules]

In[13]:= triplot10, Frame True, GridLines Automatic

From In[13]:=

4

3

9

5

1

2

8

10

7

6

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Errors

When you are developing a function that will be used in Excel, you should consider returning the symbol $Failed if something

goes wrong in your function. You can do this using the Check function.

In[14]:= triplot[n_, opts___Rule] :=

CheckModule{data, g, rules},

data = Table[Random[], {n}, {2}];

rules = Sequence @@ Join{opts}, Optionstriplot;

PlanarGraphPlot[data, rules]

, $Failed

The symbol $Failed is converted to a #VALUE! error in Excel that will suppress further dependent calculations.

In[15]:= triplot["hello"]

Table::iterb : Iterator {hello} does not have appropriate bounds. More…

Out[15]= $Failed

16 ExcelLink

https://reference.wolfram.com/language/ref/$Failed.html
https://reference.wolfram.com/language/ref/Check.html
https://reference.wolfram.com/language/ref/$Failed.html

To be complete, you should also create a catch-all function definition that will handle the case where users provide arguments
that do not match the pattern you specified. By default, the function returns unevaluated.

In[16]:= triplot[1, 2, 3]

Out[16]= triplot[1, 2, 3]

This traps the error.

In[17]:= triplot[___] := $Failed

In[18]:= triplot[1, 2, 3]

Out[18]= $Failed

You can also create your own error messages to inform the user about what went wrong.

In[19]:= triplot[___] :=

Module{},

Messagetriplot::"args";

$Failed

In[20]:= triplot::"args" = "Arguments are incorrect"

Out[20]= Arguments are incorrect

In[21]:= triplot[1, 2, 3]

triplot::args : Arguments are incorrect

Out[21]= $Failed

Code Box Deployment

Once you have developed a set of Wolfram Language functions you would like to use in Excel, you can collect cells that define
the functions in one place to make it easier to transfer the code to Excel.

In[1]:= If$VersionNumber ≥ 6, Needs"ComputationalGeometry`", Needs"DiscreteMath`ComputationalGeometry`"

In[2]:= Cleartriplot

In[3]:= triplot::"usage" = "triplot[n] plots a random triangulation of n points.";

In[4]:= Optionstriplot = Frame False, GridLines None;

In[5]:= triplot[n_, opts___Rule] :=

CheckModule{data, g, rules},

data = Table[Random[], {n}, {2}];

rules = Sequence @@ Join{opts}, Optionstriplot;

PlanarGraphPlot[data, rules]

, $Failed

In[6]:= triplot[___] :=

Module{},

Messagetriplot::"args";

$Failed

In[7]:= triplot::"args" = "Arguments are incorrect";

ExcelLink 17

To deploy this code as an Excel function, you will need to copy the contents of the notebook cells that define the function to an
initialization code box in an Excel workbook.

Here is how to do this.

1. Create an initialization code box in Excel:

◼ Click Macros on the Wolfram System Toolbar.

◼ Click New... and name the macro Initialization. This is the default if no other macros exist in your workbook.

◼ Select a location for the code box and click OK.

2. Copy the code from the Wolfram System:

◼ Use Kernel ▶ Show In/Out Names to temporarily hide input labels.

◼ Select the Input cells to copy. To select noncontiguous cells, hold down the Ctrl key.

◼ Press Ctrl+C or choose Edit ▶ Copy.

3. Paste the Wolfram Language code into the Excel code box:

◼ Click and drag inside the code box to select all existing contents.

◼ Press Delete to delete the previous contents.

◼ Press Ctrl+V or choose Edit ▶ Paste.

You can now use the Wolfram Language function you created inside Excel.

Notes

◼ Using the code box approach, you can create workbooks that have no dependencies on other files.

18 ExcelLink

Package Deployment

Wolfram Language notebooks can automatically generate an associated package file. This provides an easy way for you to
export a set of Wolfram Language function definitions you would like to use in an Excel workbook.

With this in mind, on the Excel side, the MathematicaLink add-in checks for a package file with the same name in the same
directory when initializing a workbook. If one is found, the code in the file is considered the initialization code for the workbook.

Here is how to create a package file from a notebook, then use the contents of the package file as initialization code in a
workbook:

◼ Create .nb and .xls files with the same name in the same directory.

◼ Select the cells that contain code that will be used in the workbook.

◼ Click Cell ▶ Cell Properties ▶ Initialization Cell to specify the selected cells as initialization cells.

◼ Save the notebook. When you do this, you will be prompted to create a package file with the contents of the initialization
cells.

◼ Click Create Auto Save Package.

You should now have .nb, .m and .xls files in the same directory with the same name. In the future, every time you save
changes to the notebook, the package file is automatically updated. In turn, the next time you evaluate in Excel, the new set
of function definitions will be automatically loaded and used.

Notes

◼ Using the package approach, you can easily develop and update function definitions for a workbook. However, you must
remember to send the package file along with the workbook to enable others to interact with the workbook.

◼ During development, be sure to save changes to your Wolfram Language notebook in order to update the package file
before using it from the Excel side.

ExcelLink 19

Creating Excel Macros
Developing Macros

Setting Up a New Notebook

When developing Wolfram Language code, it is best to separate input and output definitions from the main analysis portion of
the routine. This way your analysis code can be easily adapted to obtain inputs and send outputs anywhere.

Here is a sequence of Wolfram Language commands that performs some analysis.

This section defines inputs.

In[1]:= m = {{1., 2.}, {3., 4.}};

This section performs your analysis.

In[2]:= m = Inverse[m];

This section displays outputs.

In[3]:= m

Out[3]= {{-2., 1.}, {1.5, -0.5}}

To use this code as an Excel macro, you only need to load the ExcelLink package to modify the input and output sections.
Before doing this, open Excel and type in the same inputs into the workbook locations indicated in the following.

This section loads required packages.

In[4]:= Needs"ExcelLink`"

This section defines inputs from Excel.

In[5]:= m = Excel["B3:C4"];

This section performs your analysis.

In[6]:= m = Inverse[m];

This section returns outputs to Excel.

In[7]:= Excel["B3:C4"] = m

In this example, the input and output range is the same. This is a way of performing in-place evaluation.

Modifying an Existing Notebook

To convert an existing Wolfram Language notebook to be used as an Excel macro:

◼ Locate the cells in your notebook that define inputs to your analysis.

◼ Modify those cells to use values contained in Excel.

◼ Likewise, locate the cells in the notebook that display outputs of your analysis.

◼ Modify those cells to return results to Excel.

For more information, see the section Code Box Deployment.

20 ExcelLink

Special Considerations

Status

If your analysis takes a while to complete, you may want to provide some feedback to the user on how the analysis is proceed-

ing. You can do this by using the ExcelStatus function.

In[1]:= Needs"ExcelLink`"

In[2]:= ExcelStatus"Processing data...";

Pause[3];

ExcelStatus"Analyzing data...";

Pause[5];

ExcelStatus"Generating report...";

Pause[1];

ExcelStatus[];

This writes status information to the status bar at the bottom left-hand side of the Excel window. In the final line,

ExcelStatus is called without arguments in order to return the status bar to its default state.

Notes

◼ Writing status messages makes the analysis section of your notebook Excel specific. However, this may be required for
longer routines.

◼ Writing status messages can also be a good way to see which part of your analysis is taking up the most time.

Dialogs

If you would like to ask the user to select a range or specify a file name during a macro, you can do so using the

ExcelDialog function. The symbol $ExcelDialogs gives a list of available dialogs.

In[9]:= $ExcelDialogs

Out[9]= {Range, Open, Save, Files, Folder}

This displays the "Range" dialog.

In[10]:= ExcelDialog["Range"]

Out[10]= -Range: B3:C4-

Notes

◼ When running code from the Wolfram System, you need to activate Excel first to interact with an Excel dialog.

Notebook Deployment

When developing Excel macros, you do not need to transfer code to a workbook. The Wolfram Language code can remain
stored in a notebook file. In this case, any time you want to run a macro on a particular Excel workbook, open the notebook
that contains the macro and, with the workbook open in Excel, evaluate the code from the notebook.

Code Box Deployment

To create a standalone workbook interface, you can transfer the Wolfram Language macros you have developed in a notebook
to code boxes in the Excel workbook. Once this is done, you can create buttons for the macros.

ExcelLink 21

To deploy Wolfram Language code as an Excel macro, you will need to copy the notebook cells that define the macro to a code
box in an Excel workbook.

Here are the notebook cells that contain the code you want to use as a macro.

In[1]:= Needs"ExcelLink`"

In[2]:= m = Excel["B3:C4"];

In[3]:= m = Inverse[m];

In[4]:= Excel["B3:C4"] = m

Here is how to transfer the code to Excel.

1. Create a code box for the macro in Excel:

◼ Click Macros on the Mathematica toolbar.

◼ Click New... and name the macro whatever you like. Spaces in the macro name are permitted.

◼ Select a location for the code box and click OK.

2. Copy the code from the Wolfram System:

◼ Use Kernel ▶ Show In/Out Names to temporarily hide input labels.

◼ Select the cells to copy. To select noncontiguous cells, hold down the Ctrl key.

◼ Press Ctrl+C or choose Edit ▶ Copy.

3. Paste the Wolfram Language code into the Excel code box:

◼ Click inside the code box you just created.

◼ Click and drag to select all existing contents of the code box.

◼ Press Delete to delete the previous contents.

◼ Press Ctrl+V or choose Edit ▶ Paste.

22 ExcelLink

◼ Select the name of the macro from the Available Macros list.

◼ Click Button….

◼ Select a location for the button and click OK.
For more information on using macros you create in Excel, see Working with Macros.

Notes

◼ When running macro code from inside Excel, it is not necessary to load the ExcelLink package. However, you can still
include the line in your macro.

◼ Using the code box approach, you can create workbooks that have no dependencies on other files.

Package Deployment
Wolfram Language notebooks can automatically generate an associated package file. This provides an easy way to export a set
of Wolfram Language commands that can be used as a one-click workbook processing macro.

To create a package file, follow the steps for creating a package file outlined in the Package Deployment section of Creating
Excel Functions. The only difference is, in this case, you will save a sequence of macro commands to the package file instead of
a set of function definitions.

You should now have .nb, .m and .xls files in the same directory with the same name. In the future, every time you save
changes to the notebook, the package file is automatically updated. In turn, the next time you click Evaluate in Excel, the new
workbook processing macro will be used.

Notes

◼ If you would like the kernel to close after workbook processing is complete, include Quit[] as the last line of your macro.

ExcelLink 23

To create a button for the Mathematica Macro:

https://reference.wolfram.com/language/ref/Quit.html

Working in Excel: Getting Started
Loading the Add-In

After installing the link, you will see a Mathematica Link for Excel folder in your Start ▶ All Programs menu. The add-in in this
folder is required if using the link from the Excel side or when copying and pasting data between programs.

The Mathematica Link for Excel start menu folder.

If you did not install the add-in when you installed the software, click Mathematica Link Add-In to do so now. The add-in will
install itself when it is loaded the first time. This may take a moment depending on your antivirus/security settings.

If you are prompted to do so, choose to Enable Macros in the security warning dialog. If no dialog appears and nothing
works, you may need to adjust your Excel macro security settings to permit the macros in the add-in to run. Refer to the Help
menu in your version of Excel regarding how to change your macro security settings. Once you have adjusted your security
settings, close Excel and try loading the add-in again.

Once the add-in is loaded, the Mathematica toolbar will appear.

◼ In Excel 2007 or later, the Mathematica toolbar can be found under the Add-Ins ribbon tab.

The Mathematica toolbar.

If you would like a Mathematica menu instead, you can click the Options button on the toolbar. All commands in the Mathemat-
ica menu are identical to those on the Mathematica toolbar. The Mathematica menu can be useful if you would like to use the
Alt key to access menu-based commands.

Once you have installed the add-in the first time, you no longer need to use the Start menu shortcut. Instead, you can use
Tools ▶ Add-Ins dialog to load or unload the Mathematica Link add-in. Excel checks the settings in this dialog each time it
starts and automatically loads any checked add-ins.

The Excel add-ins manager.

◼ To access the add-ins manager in Excel 2007 or later, click the Office button / File menu to the upper-left corner, click
Excel Options, then under Add-Ins, next to the Manage: Excel Add-Ins dropdown box, click Go.

24 ExcelLink

Entering a Function

Once the Mathematica Link add-in is loaded, you are ready to perform Wolfram Language calculations inside Excel. One way of
doing this is using the EVAL worksheet function. This worksheet function allows you to call any Wolfram Language function
from within an Excel formula.

Try entering the simple Wolfram Language function Prime in an empty worksheet cell. This is done as shown.

Formula Result

=EVAL("Prime",100) 541

The value returned is the 100th prime number.

◼ International verisons of Excel may require semicolon-separated formulas such as =EVAL("Prime"; 100).

◼ During your first calculation, a Wolfram System kernel will be launched as a computation server for Excel. This new process
may appear in your Windows task bar.

Now, try creating an interactive prime number calculator by specifying a cell reference as an argument.

Formula Result

=EVAL("Prime",A1) #N/A

Unless you have already entered a value in cell A1, the function returns unevaluated and displays an error code. The #N/A
error code indicates that one or more inputs to the formula are not available.

Type any integer you choose in cell A1, and a prime number will be calculated for you.

Here are some other examples.

Formula Result

=EVAL("Factorial",10) 3628800

=EVAL("Det",A1:C3) determinate of matrix in cells A1:C3

=EVAL("Expand","(x+1)^3") 1 + 3 * x + 3 * x ^ 2 + x ^ 3

=EVAL("Plot","x^2","{x,0,5}") ExcelGraphic[1]

The Wolfram Language contains thousands of functions. If you know precisely which Wolfram Language function you wish to
use and the arguments it takes, you can type it directly into your spreadsheet, as shown.

If you are unsure of the name of a Wolfram Language function or how to use it, or want to explore the functions the Wolfram
Language has to offer, click Functions on the Mathematica toolbar. This will launch the Wolfram Language Function Wizard.

The first step of the wizard is designed to help you find, and learn about, Wolfram Language functions.

ExcelLink 25

https://reference.wolfram.com/language/ref/Prime.html

Mathematica Function Wizard—step 1.

The next step is designed to help you interactively specify arguments to the function.

The Mathematica Function Wizard—step 2.

An optional third step is available to select and specify options for functions, such as Plot, that have a defined set of options.

The Mathematica Function Wizard—step 3.

26 ExcelLink

https://reference.wolfram.com/language/ref/Plot.html

Notes

◼ Unlike Excel, the Wolfram Language uses case-sensitive syntax. Therefore, be sure to capitalize Wolfram Language function

names like Prime.

◼ If you do not include a * character in your name search, the wizard defaults to a non-case-sensitive search for *name*.

◼ You cannot interact with a Wolfram System front end that is in server mode. If you would like to work in the Wolfram
System front end, you can launch another standard instance of the front end.

Creating a Macro

To call Wolfram Language code as an Excel macro, the Wolfram Language code must be contained in a named code box inside
Excel. Once you have created the named code box, you can then create a button that will call the code in the box. The Wol-
fram Language Macros manager can help you do this.

To create a macro code box:

◼ Click Macros on the Mathematica toolbar.

◼ Click New… and specify a name. In this case, name the macro "Example".

◼ Select where to place the code box.

◼ Click OK.

The Example macro is added to the list Available Macros and a code box for the Example macro is inserted at the location you
specified.

Running Wolfram Language code as an Excel macro.

The initial contents of the code box are specified by a customizable template. In this case, you can leave the default code as is.
Before running the code, however, you should type values into the cells referenced in the macro.

To run a macro:

◼ Select the macro from the available macros list.

◼ Click Run.

To make it more convenient to run the macro, you can create a button for the macro.

ExcelLink 27

https://reference.wolfram.com/language/ref/Prime.html

To create a macro button:

◼ Select the macro from the available macros list.

◼ Click Button….

◼ Select where to place the button.

◼ Click OK.

Creating a button for a Wolfram Language macro.

Notes

◼ The default macro name, Initialization, is reserved for code you want to run automatically every time you connect to a
kernel or click Evaluate.

◼ To move a button or a code box, hold down the Ctrl key before selecting it.

◼ Code boxes can be located anywhere in a workbook. They do not need to be on the same sheet as the button calling the
code.

Evaluating an Expression

You can use the Mathematica Clipboard window to evaluate Wolfram Language expressions the same way you would in a
Wolfram Language notebook. This may be useful, for example, to quickly check the state of a variable or experiment with a
function you are using for the first time.

To evaluate an expression in the Mathematica Clipboard window:

◼ Click Clipboard on the Mathematica toolbar.

◼ Type the expression into the Mathematica Clipboard window.

◼ Click Evaluate.

Typing an expression into the Mathematica Clipboard window.

Once the Wolfram System kernel has evaluated the expression, the answer replaces the contents of the clipboard window.

28 ExcelLink

Viewing evaluation results in the Mathematica Clipboard window.

◼ To restore the original input expression, click Restore.

Notes

◼ To paste evaluation results to a location in Excel, click Paste. You will be prompted to specify where to paste the results.

◼ To paste evaluation results to another program, click Put. This puts the evaluation results onto the global clipboard. You
can then paste them into another program.

Unloading the Add-In

If you are finished using the link, you can uncheck Mathematica Link in the Add-Ins manager and click OK. This unloads the
add-in from Excel.

Unloading the Mathematica Link add-in.

When you unload the link, you will be prompted to delete your personal settings.

Click No to preserve your settings until the next time you use the link. Click Yes to restore default settings the next time you
use the link.

Notes

◼ If you do not uncheck Mathematica Link in the Add-Ins manager, the link is automatically loaded the next time you start
Excel.

ExcelLink 29

General Principles
Nonmodal Dialogs

All MathematicaLink dialogs are nonmodal. You can leave dialogs open and still work in Excel.

There are two ways of closing a link dialog:

◼ Click Close or press the Esc key. The dialog remembers its current location and state the next time it is displayed.

◼ Click the X in the upper right-hand corner. The dialog returns to a default location and state the next time it is displayed.

Notes

◼ Occasionally, changes you make in Excel may not be reflected in the contents of an open dialog. If this happens, redisplay
the dialog to refresh its contents.

The Context Menu

MathematicaLink commands that operate on the current selection are available from a Mathematica Context menu. To display
this menu, right-click a range when Mathematica contexts are enabled.

The Mathematica Context menu.

To enable or disable Mathematica contexts, click Contexts on the Mathematica toolbar.

Notes

◼ All commands on the Mathematica Context menu also have a keyboard shortcut. See Keyboard Shortcuts for a listing.

30 ExcelLink

Expression Cells

If the Number Format of an Excel cell is set to Text, the contents of the cell are considered to be a Wolfram Language expres-
sion when transferring them via the clipboard or in a macro.

For more information, see Strings in section ExcelLink Functions.

Notes

◼ The number format of a range can also be changed using Excel's built-in Format ▶ Cells ▶ Number tab. Cells should be
formatted as Text before entering an expression. To convert existing contents to Text, you can reenter them manually or
use the provided Expression command from the Mathematica Context menu. Expressions such as 1 /2 or -x can only be
entered in cells formatted as Text. Otherwise, Excel will attempt to interpret them as something else. When working with
expression cells, all cells in the range should be formatted as Text. Partial expression ranges are not currently supported.

From the Wolfram Language, you can use the ExcelFormat function to apply or unapply Text format to a range.

Data Cells

If the Number Format of an Excel cell is anything other than Text, the cell is considered a data cell.

When transferring the contents of data cells from Excel to the Wolfram System:

◼ Data is transferred as it is natively stored in Excel. This means, for example, all numbers will be returned as floating-point
doubles. This includes dates that are numbers with special formatting properties.

When transferring Wolfram Language expressions to Excel data cells:

Nonnative expressions are converted to an equivalent Excel data type whenever possible. Expressions that do not have any

possible Excel equivalent are converted to InputForm strings.

See the section Data Types for more details.

Notes

◼ You can use the ExcelDate and ExcelForm functions to work with date values once you get them into the Wolfram

Language. Cell references in Excel-based formulas such as =EVAL(A1,A2,A3) are an exception to this rule. In this case, you
must wrap formula arguments with the provided DATA function to treat them as data cells, =EVAL("StringJoin", DATA(A2),
DATA(A3)), for example.

ExcelLink 31

https://reference.wolfram.com/language/ref/InputForm.html

Working with Functions
The Link Functions

There are five worksheet functions provided by the MathematicaLink add-in.

Function Use

EVAL perform Wolfram Language evaluations

EXPR build Wolfram Language expressions

DATA specify an argument as native Excel data

RULE build a Wolfram Language rule

CALC force a function to respond to the Excel calculate command (F9)

The MathematicaLink functions.

Together, these functions can be used to build up expressions and perform evaluations in the Wolfram Language in very
flexible ways. For more detailed information on each worksheet function, see Excel Worksheet Functions.

Using the EVAL worksheet function, you can call any function defined in the Wolfram Language. This immediately extends the
number of functions available inside Excel from a few hundred to several thousand.

Excel syntax Wolfram Language syntax

=EVAL("f","arg1","arg2",...) f[arg1, arg2,...]

The EVAL function.

Example Result

=EVAL("Simplify","x^2+2x+1") (1 + x)^2

=EVAL("Random","Integer","{1,6}") an integer between 1 and 6

EVAL examples.

As shown, Wolfram Language syntax must be wrapped in quotes when directly typed into an Excel formula. If this is not done,
Excel's formula parser will try to interpret these as Excel syntax. To avoid having to do this, you can create references to
arguments in Excel cells. This is discussed in more detail in Specifying Arguments.

In its single-argument form, the EVAL function can also be used to evaluate Wolfram Language expressions such as symbols or
operator forms of expressions.

Excel syntax Wolfram Language syntax

=EVAL("expression") {expression}

The single-argument form of EVAL.

Example Result

=EVAL("$Version") the version of the kernel you are running

=EVAL("7! + 5!") 5160

EVAL single-argument examples.

32 ExcelLink

Specifying Function Heads

When specifying a Wolfram Language function, the function does not necessarily have to be a named Wolfram Language
function. The function can also be specified as a nameless pure function. Using pure functions, you can use multiple functions
to create a new function on the fly.

The syntax of Wolfram Language pure functions is as follows:

◼ Slots for individual arguments are specified as #1, #2,

◼ All arguments can collectively be inserted at one point using ##.

Here, a pure function with two arguments is created in a step-by-step way.

Method Notes

=EVAL("Sum[1/x^3,{x,10}]") this sums the first 10 terms in the series

=EVAL("Sum[1/x^3,{x,#1}]","10") number of terms is now specified as a pure function argument

=EVAL("Sum[1/x^#2,{x,#1}]","10","3") exponent of x is now specified as a second pure function argument

Creating a pure function.

Note that, as shown, arguments do not have to appear in sequential order inside the function. The index specifies which
argument goes where.

Once values that may be edited have been specified as arguments, a reference to the cells containing the values can be made.
This is discussed in the next section.

Notes

◼ If you are familiar with pure functions, you will notice the pure function indicator (&) is not used here. There is no need
because, in this context, it is clear that if # signs are present, a pure function is being specified. For more information on
creating and using pure functions, refer to the Tech Note Functional Operations.

Specifying Arguments

While arguments can be typed directly into a formula, it is generally more convenient to specify arguments as the contents of a
cell or a range of cells. Editing values contained in cells is much easier than editing values embedded in a formula. And, if
entered in a cell, Wolfram Language syntax does not need to be wrapped in quotes.

Method Notes

=EVAL("Random[Integer,{1,6}]") function and its arguments entered as a single expression

=EVAL("Random","Integer","{1,6}") function arguments passed individually

=EVAL("Random",C2,"{1,6}") symbol Integer now provided by cell C2

=EVAL("Random",C2,D2:E2) list {1, 6} now provided by range D2:E2

Specifying range arguments.

Using the last form of the example, you can easily change the upper and lower bound of the random number by changing cells
D2 and E2. Also, by typing Real in cell C2 you can change the type of random number returned.

A single column or single row of cells is interpreted as a one-dimensional Wolfram Language list; if a range has multiple rows
and multiple columns, it is returned as a 2D list of lists.

ExcelLink 33

https://reference.wolfram.com/language/tutorial/FunctionalOperations.html

Specifying String Arguments

To specify a string in the Wolfram Language, you can wrap a text argument with the DATA function. The following methods
return a list of Wolfram Language functions that end in Solve.

Method Notes

=EVAL("Print",DATA("Hello")) evaluates Print[Hello]

=EVAL("Print",DATA(A1)) string now provided in cell A1

Specifying string arguments.

Specifying Numeric Data

Wolfram Language evaluations are performed at the precision of the inputs provided. If you would like the kernel to perform
evaluations numerically at floating-point precision, wrap your inputs with the DATA function.

Method Notes

=EVAL("Eigenvalues",A1:C3) performs evaluation using symbolic or numeric methods depending on the
inputs provided in A1:C3

=EVAL("Eigenvalues",DATA(A1:C3)) always performs evaluation using numeric methods

Specifying numeric arguments.

Specifying Subexpressions

Using the EXPR function you can build up multi-function expressions for a single evaluation.

Method Notes

=EVAL("f",EXPR("g",1),EXPR("g",2)) evaluates f[g[1],g[2]]

Specifying subexpressions.

Specifying Options

Wolfram Language functions may have defined options associated with them. To specify an optional argument you can use the
RULE worksheet function.

Method Notes

=EVAL("ListPlot",A1:B100,RULE("PlotJoined",D2)) specifies an option using the value in cell D2

Specifying an option.

34 ExcelLink

https://reference.wolfram.com/language/ref/Print.html

Generating Graphics

The EVAL worksheet function can also be used to return Wolfram Language graphics.

Example Result

=EVAL("ListPlot","Table[Random[],{50}]") ExcelGraphic[1]

=EVAL("Graphics","Polygon[{{0,0},{9,3},{3,5}}]") ExcelGraphic[2]

=EVAL("Plot3D","Sin[x+Cos[x y] y]","{x,0,4}","{y,0,4}") ExcelGraphic[3]

EVAL graphics examples.

Wolfram Language graphics are displayed as picture objects in Excel. By default, these pictures are rendered as Windows
metafiles. This format scales reasonably well since it is a vector format. Font sizes, however, may become a bit distorted when
a graphic is resized. If this happens, you can force the graphic to be re-rendered at its new size by recalculating its formula.
Re-rendering the graphic will reapply any font size you have specified as a graphics option.

Notes

◼ It is the name of a graphic that associates it with a particular Excel cell. For example, if a formula in cell E10 returns
graphics, the picture named "Graphic E10" will be updated on the same sheet. If no picture named "Graphic E10" exists on
that sheet, a new graphic will be created. This is the extent to which the picture is "linked". When cutting and pasting a
Wolfram Language–generated picture to another application or worksheet, this name-based "link" is not maintained. The
copied graphic is simply a static picture.

◼ By modifying the name of a picture, you can change which cell updates that graphic. To modify the name of a picture, you
can select the picture and click in the Name box on the left-hand side of the formula bar.

Generating Messages

If a message is generated during a kernel evaluation, it is sent to the Wolfram System messages window. Here are some
evaluations that generate kernel messages.

Example Result

=EVAL("7+") $Failed or #VALUE!

=EVAL("1/0") ComplexInfinity

=EVAL("Inverse","{{1,2},{2,4}}") Inverse[{{1, 2}, {2, 4}}]

EVAL single argument examples.

When a Wolfram Language evaluation returns $Failed , an Excel #VALUE! is returned. This suppresses further evaluations

that depend on this result. However, often when messages are generated, the original calculation request may be returned
unevaluated, as shown in the last example.

Notes

◼ Options that control how the link responds to a kernel message can be specified under the Mathematica Options ▶

Message tab.

ExcelLink 35

https://reference.wolfram.com/language/ref/$Failed.html
https://reference.wolfram.com/language/ref/ComplexInfinity.html
https://reference.wolfram.com/language/ref/Inverse.html
https://reference.wolfram.com/language/ref/$Failed.html

Using Array Formulas

To return lists of values to multiple cells, Wolfram Language functions can be entered as an array formula. Some functions in
the Wolfram Language naturally return lists, others can be mapped over lists. Here are some examples.

Example Result

=EVAL("Range","10") {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

=EVAL("Map","Factorial",A1:A10) a list containing the factorial of each number in A1:A10

Formulas that can be entered as an array.

To enter a formula as an array:

◼ Select all cells that will be in the array.

◼ Enter the formula.

◼ Press Ctrl+Shift+Enter.

Once entered, array formulas appear surrounded by { } in the formula bar. All cells in an array formula range share a single
formula, each element of the array returned to a separate cell.

The MathematicaLink add-in provides two tools to help make using array formulas easier:

◼ The Wolfram Language Function Wizard can help you automatically enter and edit array formulas.

◼ The Array command on the Mathematica Context menu provides a way to easily toggle between single-cell and array
formulas.

36 ExcelLink

The Array toggle command on the Mathematica Context menu.

Notes

◼ If you manually edit an array formula but forget to select all cells in the array beforehand, an error message will appear
when you try to reenter the formula. If this happens, press Esc to cancel any changes you made. Then, select all cells in
the array before making the changes again.

◼ Array formulas can significantly reduce calculation times if the same operation is being performed on a large number of
cells. If you have filled a range with the same formula by dragging the formula across the range, it may be much faster to
perform these calculations using an array formula. There is a transaction time associated with each call to the Wolfram
Language. If a single array formula is used to return values for 100 cells, recalculation could be up to 100 times faster than
calling 100 individual formulas.

ExcelLink 37

Controlling Recalculation

Forcing Recalculation

Excel typically recalculates formulas only when the inputs to a formula have been changed. However, when you change the
definition of a function or the value of a symbol in the Wolfram Language, there is no way for Excel to automatically know
about this change. In this case, you may want to force formulas to recalculate.

To force repeated recalculation of a specific formula:

◼ Wrap the formula with the CALC function. You can then trigger recalculation of that formula by pressing F9.

Example Description

=CALC(EVAL("Random[]")) gives a new random number each time F9 is pressed

Marking a formula for repeated calcuation using the CALC function.

To force one-time recalculation of the current selection:

◼ Press Ctrl+Shift+= or choose Recalculate from the Mathematica Context menu.

To force recalculation of all link functions in the current workbook:

◼ Click the Evaluate button. This is an option specified under Mathematica Options ▶ Workbook.

Disabling Recalculation

By temporarily storing formulas as comments, you can disable recalculation on a formula-by-formula basis. You may want to
do this to preserve currently calculated values or to suppress unwanted recalculation.

To comment link formulas in the current selection:

◼ Press Ctrl+Shift+' or check Comment from the Mathematica Context menu.

To uncomment link formulas in the current selection:

◼ Press Ctrl+Shift+' again or uncheck Comment on the Mathematica Context menu.

Commenting a formula essentially freezes the formula in its currently calculated state. Commenting formulas for an entire
workbook is discussed as a way of sharing a workbook with others in Sharing Workbooks.

Notes

◼ To select an entire sheet, click the upper left-hand corner of the header row, between A and 1. You can then apply selec-
tion commands to the sheet.

◼ The CALC function can be used to generate random numbers for Excel-based simulations.

38 ExcelLink

Working with Macros
Macro Types

There are three types of Wolfram Language macros that you can create.

Macro Type Description

Definitions Macro defines Wolfram Language functions used in a workbook

Processing Macro processes a workbook when the Evaluate button is clicked

Task Macro performs a task when an associated button on a spreadsheet is clicked

Types of Wolfram Language macros.

The difference between the first two is that a workbook definitions macro does not perform actions on a workbook, a workbook
processing macro does.

All Wolfram Language macros can be deployed by creating a code box to store the Wolfram Language code inside a workbook.
For workbook-level macros, however, you can also store the Wolfram Language code in a package file.

Macro Type Deployment

Definitions Macro initialization code box or workbook package file

Processing Macro initialization code box or workbook package file

Task Macro macro code box

Deploying Wolfram Language macros.

A workbook package file should be in the same directory and have the same name as a workbook with the .m extension
replacing .xls.

Working with Code Boxes

Code boxes are simply text boxes that have been formatted for writing Wolfram Language code and given a special name.
They are, in every other way, ordinary text boxes.

There are two ways of selecting a text box: selecting the box itself or selecting text inside the box. The selection border of the
text box will be different in each case. To do anything other than edit the text inside the box, you will need to make sure the
box itself is selected. Once the box itself is selected, you can, for example, move it or resize it, copy and paste it to another
location, or delete it.

ExcelLink 39

When typing in a text box, be aware that Excel goes into a different mode. Most toolbar buttons, for example, are no longer
available.

Excel while in edit mode.

As with many toolbar buttons, Wolfram Language macros do not work while Excel is in this mode. To get out of this edit mode,
press the Esc key or click out of the box.

Working with Buttons

By default, the caption of the button will be the same as the macro name. You can change this. You can also change the size of
the button or move it. To do this, you will need to select the button.

To select a button:

◼ Hold down the Ctrl key and then click the button.

Once you have a button selected, you can work with it as you would any other shape. You can, for example, move it or resize
it, change its caption, copy and paste it to another location, or delete it.

Right-clicking a button will also select it and allow you to work with it in various ways.

Right-clicking a macro button.

40 ExcelLink

Developing on the Clipboard

The Mathematica Clipboard window can evaluate multiple lines of code at a time. When multiple lines are evaluated on the
clipboard, only the result from the last line is returned. You can use this behavior to progressively build up code that can be
used as a macro by alternatively clicking Evaluate and Restore.

Developing code on the clipboard.

When used this way, the Mathematica Clipboard window becomes a floating macro code box. The clipboard Evaluate button
becomes a Run button for the macro during development. When you are done developing, you can transfer the code to a code
box.

To transfer code from the Mathematica Clipboard to a code box:

◼ Click Put on the Mathematica Clipboard.

◼ Select where to put the code in the code box.

◼ Press Ctrl+V or choose Edit ▶ Paste.

Developing in the Wolfram Language

If you are familiar with the Wolfram Language notebook front end, you can develop code in that environment, then transfer it
to a code box in Excel.

For more information on developing macros in the Wolfram Language, see Creating Excel Macros.

Protecting Your Code

Once you have developed a macro, you may want to protect your code. This can be done by hiding or protecting the sheet
containing the code.

To hide a sheet in Excel:

◼ Click Format ▶ Sheet ▶ Hide.

To protect a sheet in Excel:

◼ Click Tools ▶ Protection ▶ Protect Sheet.

See Excel's Help menu for more information on these commands.

ExcelLink 41

Link Management
Opening a Link

The first time you request a Wolfram Language evaluation in Excel, a link to a Wolfram System kernel will open automatically.
If you would like to force a link to open, even if there is nothing to evaluate, you can:

◼ Click the Evaluate icon on the Mathematica toolbar.

You can manually specify a kernel to connect to using the Mathematica Options ▶ Kernel tab. Settings you specify will be
used automatically the next time you connect.

Notes

◼ If you do not have a typical Wolfram System installation, you may be required to specify a kernel the first time you use the
link.

Interrupting Evaluations

To interrupt a Wolfram Language evaluation:

◼ Click Evaluate on the Mathematica toolbar.

Although most Wolfram Language evaluations can be interrupted, some cannot. If the kernel does not respond to an abort
request after some time, you can choose to close the kernel to end the evaluation.

To close a kernel during an evaluation and return control to Excel:

◼ Hold down Shift and click Evaluate on the Mathematica toolbar, or

◼ Right-click the Wolfram System kernel in the task bar and choose Close.

Notes

◼ Pressing the Esc key does not interrupt Wolfram Language evaluations. The Esc key is used by Excel to send interrupts to
local Visual Basic code.

◼ Aborted formulas return #NULL!, thereby suppressing evaluation of dependent formulas.

Closing a Link

To close a link with a Wolfram System kernel, you can:

◼ Hold down the Shift key while clicking Evaluate.

◼ Click Close under Mathematica Options ▶ Kernel.

◼ Evaluate Quit[] in the clipboard window, a function or a macro.

Notes

◼ The kernel is automatically closed whenever Excel is closed or the MathematicaLink add-in is uninstalled.

42 ExcelLink

https://reference.wolfram.com/language/ref/Quit.html

Sharing Workbooks
Unlinking a Workbook

Before sharing a workbook containing Wolfram Language formulas or macros, you may first want to unlink the workbook.
Unlinking a workbook will allow others to take a look at the results in the workbook without launching a kernel, encountering
pathnames from your hard drive or inadvertantly replacing cell values with #NAME? errors.

To unlink a workbook:

◼ Click Unlink on the Mathematica Options ▶ Workbook tab.

Unlinking a workbook.

When unlinked, formulas are stored as cell comments and macro buttons display a "macro cannot be found" error when clicked.

Once a workbook is unlinked, it can easily be viewed without problems on other machines, even machines where Mathemati-
caLink is not installed. Those who do have the link will have the option of relinking the workbook and interacting with it.

Notes

◼ In Excel, cell comments are typically indicated by a small red triangle in the upper-right corner of a cell. This is an option
that can be specified under Tools ▶ Options ▶ View. To view a comment, place your cursor over the cell.

Relinking a Workbook

When opening an unlinked workbook, link users are automatically prompted to relink formulas in the workbook.

Click Yes to relink all formulas contained in the workbook.

Click No to leave the workbook as is. You can relink formulas later, at any time, by clicking Relink on the Mathematica
Options ▶ Workbook tab.

Notes

◼ Relinking formulas recalculates all Wolfram Language formulas in the workbook, overwriting the existing set of results.

◼ If a workbook contains only Wolfram Language macros, the relink prompt will not appear. Macro buttons are relinked
without prompting since this has no other impact on the workbook.

ExcelLink 43

Fixing Broken Links

If a workbook was not unlinked prior to opening it on another machine, broken path-based formula links can be fixed automati-
cally by clicking Relink under Mathematica Options ▶ Workbook.

This is possible, of course, only if the MathematicaLink add-in is available on that machine.

Notes

◼ Fixing broken links recalculates all Wolfram Language formulas in the workbook, overwriting the existing set of results.

44 ExcelLink

Using the Clipboard: Loading the Add-In
Before you can transfer data between Wolfram Language notebooks and Excel workbooks via the clipboard, you first need to
load the MathematicaLink add-in in Excel. To do this, see Working in Excel: Getting Started.

Once installed, the MathematicaLink add-in adds special copy and paste commands to Excel. These commands convert Excel
data to and from Wolfram Language lists.

Copying Data from Excel
To copy the contents of an Excel range to a Wolfram Language notebook:

◼ In Excel, select the range you want to copy.

◼ Press Ctrl+Shift+C or right-click and choose Copy if Wolfram System Contexts are enabled. This will copy the contents
of the range onto the clipboard as a Wolfram Language list.

◼ Switch to your Wolfram Language notebook and place the cursor where you would like to insert the list.

◼ Press Ctrl+V or choose Paste from the Edit menu.

Notes

◼ If the contents of the range were not converted into a Wolfram Language list, verify Wolfram System keyboard shortcuts
are enabled in Excel. You can do this under the Wolfram System Options ▶ Interface.

◼ By default, text cells are copied as Wolfram Language strings. Only cells formatted as Text are considered to contain
Wolfram Language expressions. See Strings in the section Data Types. If needed, you can convert strings to expressions

using ToExpression[data].

◼ Empty cells are copied as the symbol Empty. If needed, you can convert these to a desired default value, such as 0 or "",

using ReplaceAll[data, Empty val].

Pasting Data to Excel
To paste the contents of a Wolfram Language list to an Excel range:

◼ In a Wolfram Language notebook, select the list you wish to copy.

◼ Press Ctrl+C or choose Copy from the Edit menu.

◼ Switch to Microsoft Excel and select where to insert the contents of the list. If a single cell is selected, data will be pasted
below and to the right of that cell.

◼ Press Ctrl+Shift+V or right-click and choose Paste if Wolfram System Contexts are enabled.

Notes

◼ If nothing was pasted, verify Wolfram System keyboard shortcuts are enabled in Excel. You can do this under Mathematica
Options ▶ Interface.

◼ For best results, convert your data to Wolfram Language InputForm before pasting the data into Excel. You can do this in

the Wolfram System or using the Mathematica Clipboard window in Excel. See Fixing Problematic Data.

◼ Be sure the opening and closing brackets of the Wolfram Language list are selected. Excel will not recognize the clipboard
contents as a Wolfram Language list unless these brackets are present.

◼ A convenient way to select an entire Wolfram Language list is to place the cursor at the beginning of the list and triple-click.

ExcelLink 45

https://reference.wolfram.com/language/ref/InputForm.html

Fixing Problematic Data
If you run into problems pasting data into Excel, it is likely the copied data is not in the proper form. The Paste command

requires data to be in Wolfram Language InputForm. Depending on how you copied the data and from what kind of notebook

cell you copied it, you may end up with data in a format other than InputForm.

The Paste command can fix certain common problems with the data automatically; however, in some cases you may still need

to convert to InputForm on your own.

You can do this in two ways:

◼ In the Wolfram System, before copying, use Cell ▶ Convert ▶ InputForm.

◼ In Excel, after copying, use the Evaluate button in the Mathematica Clipboard window.

If you do not want to modify your source notebook, the second approach is the most convenient.

Here is an example of some data to paste.

In[1]:= data = Table[Random[]*10^-8, {10}]

Out[1]= 6.92556×10-9, 5.23638×10-9, 4.21124×10-9, 4.61886×10-9,

9.65829×10-10, 5.8988×10-9, 4.26737×10-9, 1.64441×10-9, 1.50418×10-9, 7.90577×10-9

To view this data in the Mathematica Clipboard window, copy the output, then in Excel, open the Mathematica Clipboard
window and click Get.

The Mathematica Clipboard window before clicking Evaluate.

You can see that additional formatting characters are present in the data. In this case, the fixes are minor, so pasting directly

into Excel does, in fact, still work. However, you can also convert the contents of the clipboard to InputForm by clicking

Evaluate.

The Mathematica Clipboard window after clicking Evaluate.

46 ExcelLink

https://reference.wolfram.com/language/ref/InputForm.html
https://reference.wolfram.com/language/ref/InputForm.html
https://reference.wolfram.com/language/ref/InputForm.html
https://reference.wolfram.com/language/ref/InputForm.html
https://reference.wolfram.com/language/ref/InputForm.html

Once the data has been standardized to InputForm, you can continue to paste it into Excel using the standard paste com-

mand or the Paste button on the Mathematica Clipboard window.

Notes

◼ An alternative to copying and pasting is to assign and retrieve Excel data programmatically from the Wolfram Language.
This can be significantly faster if you are dealing with large datasets. For more information, see Working in the Wolfram
Language: Getting Started.

ExcelLink 47

https://reference.wolfram.com/language/ref/InputForm.html

Excel Worksheet Functions
EVAL
=EVAL(expr) evaluates expr in a Wolfram System kernel.

=EVAL(head, arg1, arg2, ...) builds an expression from the provided head and args and evaluates it.

◼ =EVAL(head, arg1, arg2, ...) is equivalent to =EVAL(EXPR(head, arg1, arg2, ...)).

◼ You can use =EXPR(head, arg1, arg2, ...) to see exactly what will be evaluated in the Wolfram Language.

◼ =EVAL(head, arg1, arg2, ...) evaluates only once head and all arguments have been provided. If head or any argument refers to
an empty cell or an error, evaluation is suppressed and #N/A is returned.

◼ See notes for EXPR

◼ See also: DATA, RULE

EXPR

=EXPR(head, arg1, arg2, ...) builds an expression from the provided head and args and returns it as unevaluated text.

◼ =EXPR(head, arg1, arg2, ...) builds the Wolfram Language expression head[arg1, arg, ...].

◼ Example: =EXPR("f","x","y") returns f[x,y].

◼ You can build any expression using nested EXPR calls.

◼ Example: =EXPR("Sqrt",EXPR("Plus",EXPR("Power",A1,2),EXPR("Power",A2,2))).

◼ If head contains #, head is automatically assumed to be a pure function.

◼ Example: =EXPR("Sqrt[#1^2+#2^2]",A1,A2).

◼ =EXPR(head, arg1, arg2, ...) returns #N/A if head or any arguments refer to an empty cell or an error.

◼ =EXPR(range) trims empty cells and errors from the end of range.

◼ See also: EVAL, DATA, RULE

DATA

=DATA(text) converts text to a literal string.

=DATA(num) ensures num includes a decimal point.

=DATA(range) returns Excel[range] when range is not a single cell.

◼ The DATA function is typically used inside EVAL, EXPR or RULE calls.

◼ Example: =EVAL("FileNames",DATA("*"),DATA("C:\")).

◼ You can wrap numeric data in the DATA function to ensure numeric calculation methods are used instead of symbolic
methods. The former is often much faster.

◼ Example: =EVAL("Eigenvalues",DATA(A1:B2)).

◼ Unlike EXPR ranges, DATA ranges can contain empty cells or errors.

◼ =DATA(range) trims empty cells and errors from the end of range.

◼ See also: EVAL, EXPR, RULE

48 ExcelLink

RULE

=RULE(lhs, rhs) builds a Wolfram Language rule from the provided left-hand side and right-hand side.

◼ =RULE(lhs, rhs) builds the Wolfram Language expression lhs->rhs.

◼ Example: =RULE("x",1) returns x->1.

◼ The RULE function can be used to specify options for the Wolfram Language function in EVAL or EXPR calls.

◼ Example: =EVAL("Plot",A1,A2:A4,RULE("PlotTitle",A1),RULE("PlotStyle","Blue")).

◼ If lhs and rhs are references to multicell ranges of the same size, a list of rules is returned.

◼ Example: =EVAL("ReplaceAll",A1,RULE(A2:A4,B2:B4)).

◼ See also: EVAL, EXPR, DATA

CALC

=CALC(function) defines the calculation method of function as volatile.

◼ Volatile functions recalculate when any cell changes or when the F9 key is pressed.

◼ Nonvolatile formulas recalculate only when a referenced input cell changes.

◼ Excel functions RAND() and NOW() are examples of built-in volatile functions.

◼ Volatile functions are typically used to run simulations in Excel.

◼ You can use the CALC worksheet function to use Wolfram Language–generated random numbers within Excel-based
simulations.

◼ Example: =CALC(EVAL("Random[Integer,{1,6}]")).

◼ You can use the CALC worksheet function to "tag" specific functions to respond when F9 is pressed or when

ExcelCalculate is called from Wolfram Language code.

◼ Example: =CALC(EVAL("Set", "stockprice", G10)).

◼ Note: Volatile functions recalculate frequently and can, therefore, significantly slow down recalculation and editing opera-
tions in your spreadsheet. To avoid any potential problems, use volatile functions sparingly and, if needed, disable them
when making modifications to your spreadsheets.

◼ See also: EVAL

ExcelLink 49

Toolbar Commands
Evaluate

Establishes a connection with a Wolfram System kernel.

Reinitializes and/or recalculates the active workbook (based on workbook options).

Closes or resets the connection with a Wolfram System kernel (depending on modifier key).

Interrupts Wolfram Language evaluation (if an evaluation is currently running).

◼ Workbook options can be specified under the Mathematica Options ▶ Workbook tab.

◼ Shift+click: closes the kernel

◼ Ctrl+click: clears the kernel's Global context (soft kernel reset)

◼ Ctrl+Shift+click: closes and restarts the kernel (hard kernel reset)

◼ Location: Mathematica toolbar, Mathematica menu

◼ Keyboard shortcut: Ctrl+Alt+E

Functions

Displays the Wolfram Language Function Wizard.

◼ If no link formula is selected, the wizard starts at the Wolfram Language Function Browser step.

◼ If an existing link formula is selected, the wizard starts at the Wolfram Language Function Arguments step, and the
wizard is populated with the existing formula.

◼ Using the wizard you can search for, learn about and interactively build and edit Wolfram Language function calls.

◼ Note: The wizard is nonmodal. You can leave it open and still work in Excel.

◼ Location: Mathematica toolbar, Mathematica menu

◼ Keyboard shortcut: Ctrl+Alt+F

Macros

Displays the Wolfram Language Macros window.

◼ Using this window, you can create code boxes and corresponding buttons that allow you to run Wolfram Language code as
if it were an Excel macro. Using this window, you can also create initialization code boxes for workbooks that contain code
that is run automatically when you connect to a kernel or reevaluate the workbook.

◼ Note: The window is nonmodal. You can leave it open and still work in Excel.

◼ Location: Mathematica toolbar, Mathematica menu

◼ Keyboard shortcut: Ctrl+Alt+M

Clipboard

Displays the Mathematica Clipboard window.

◼ Using this window, you can interactively copy and paste data to Excel ranges.

◼ You can also type code directly into the Mathematica Clipboard window, evaluate it and view the results.

50 ExcelLink

◼ Note: The window is nonmodal. You can leave it open and still work in Excel.

◼ Location: Mathematica toolbar, Mathematica menu

◼ Keyboard shortcut: Ctrl+Alt+C

Contexts

Toggle command. Enables or disables Mathematica Context menu.

◼ When menus are enabled, if you right-click a range, a custom Mathematica Context menu will appear.

◼ When menus are disabled, if you right-click a range, the default Excel Context menu will appear.

◼ Location: Mathematica toolbar, Mathematica menu

◼ Keyboard shortcut: Ctrl+Alt+X

Messages

Displays the Wolfram System Messages window.

◼ Using this window, you can use view messages generated by the Wolfram System kernel.

◼ You can also locate the source of messages, browse through past messages and save messages to a log file.

◼ Note: The window is nonmodal. You can leave it open and still work in Excel.

◼ Location: Mathematica toolbar, Mathematica menu

◼ Keyboard shortcut: Ctrl+Alt+G

Options

Displays the Mathematica Options window.

◼ You can browse this window to explore link options available to you. If you change an option but want to leave the window
open, click Apply to apply the changes.

◼ Note: The window is nonmodal. You can leave it open and still work in Excel.

◼ Location: Mathematica toolbar, Mathematica menu

◼ Keyboard shortcut: Ctrl+Alt+O

Help

Opens the PDF-based Mathematica Link for Excel manual.

◼ Adobe Reader is required to view this version of the manual.

◼ The contents of this manual can also be viewed in the Wolfram Language Documentation Center under Mathematica Link
for Excel.

◼ Location: Mathematica toolbar, Mathematica menu

◼ Keyboard shortcut: Ctrl+Alt+H

ExcelLink 51

https://www.wolfram.com/products/applications/excel_link/manual.pdf
https://www.wolfram.com/products/applications/excel_link/manual.pdf

Context Commands
Expression

Toggle command. Applies or removes the Text number format from the selected range.

◼ Contents of the range are automatically reentered after the format change.

◼ If the number format for all cells is Text, the format for all cells is changed to General.

◼ If the number format for all cells is not Text, the format for all cells is changed to Text.

◼ Location: Context menu

◼ Keyboard shortcut: Ctrl+Shift+E

Copy

Copies the contents of the selected range to the Mathematica Clipboard.

◼ If the number format for all cells is Text, strings are copied as Wolfram Language text expressions.

◼ If the number format for all cells is not Text, strings are copied as Wolfram Language strings.

◼ The Copy command uses Wolfram Language InputForm to represent the contents of the range.

◼ If the Mathematica Clipboard window is open, the window is automatically updated, allowing you to view what has been
placed on the clipboard.

◼ Location: Context menu

◼ Keyboard shortcut: Ctrl+Shift+C

Paste

Pastes the contents of the Mathematica Clipboard into an Excel range.

◼ If the number format for all cells in the target range is Text, the contents of the clipboard will be pasted as Wolfram
Language text expressions.

◼ If the number format for all cells is not Text, the contents of the clipboard will be converted to native Excel data types
wherever possible.

◼ If the Mathematica Clipboard window is open, you can view the text expression before it is pasted. The Paste command

requires the contents of the clipboard to be in Wolfram Language InputForm. Note: If the expression on the clipboard is

not in InputForm, you can use the Mathematica Clipboard window to convert the expression to InputForm by clicking

Evaluate.

◼ Location: Context menu

◼ Keyboard shortcut: Ctrl+Shift+V

Clear

Clears the contents and number formats of the selected range.

◼ When using this command, the number format for the range is reset to General. This is the only difference between this
command and the Excel standard Edit ▶ Clear Contents command.

◼ Location: Context menu

◼ Keyboard shortcut: Ctrl+Shift+Delete

52 ExcelLink

https://reference.wolfram.com/language/ref/InputForm.html
https://reference.wolfram.com/language/ref/InputForm.html
https://reference.wolfram.com/language/ref/InputForm.html
https://reference.wolfram.com/language/ref/InputForm.html

Function

Edits the selected formula in the Wolfram Language Function Wizard.

◼ If the selected cell does not contain a link formula, the wizard goes directly to the Wolfram Language Function Argu-
ments step. This is the only difference between this command and the Toolbar Commands ▶ Functions command.

◼ Use this command if you know what function you would like to enter and you do not need to browse for it.

◼ See also: Functions

◼ Location: Context menu

◼ Keyboard shortcut: Ctrl+Shift+F

Array

Toggle command. Converts multi-cell array formulas to single-cell formulas and back again.

◼ When converting an array formula to a single-cell formula, you can select the top-left cell or the entire array.

◼ When converting a single-cell formula to an array formula, the array formula is automatically sized correctly, or you can
preselect the cells you would like to be included in the array.

◼ Location: Context menu

◼ Keyboard shortcut: Ctrl+Shift+A

Comments

Toggle command. Comments or uncomments formulas in the current selection.

◼ Commenting formulas allows you to temporarily disable evaluation of the selected formulas.

◼ To comment all Wolfram Language formulas on a sheet, click the top-left corner of the header rows between A and 1 to
select the entire sheet.

◼ To comment all Wolfram Language formulas in a workbook, click Unlink under Mathematica Options ▶ Workbook.

◼ Location: Context menu

◼ Keyboard shortcut: Ctrl+Shift+'

Recalculate

Recalculates formulas in the current selection.

◼ To force recalulation of all Wolfram Language formulas on a sheet, click the top-left corner of the header rows between A
and 1 to select the entire sheet.

◼ To force recalculation of all Wolfram Language formulas in the workbook, you can click Evaluate if your options are set to
do so.

◼ Location: Context menu

◼ Keyboard shortcut: Ctrl+Shift+=

ExcelLink 53

Keyboard Shortcuts
Toolbar Shortcuts

Keyboard shortcuts are available for all commands on the Mathematica toolbar. These toolbar shortcuts all include the Alt key.

Evaluate Ctrl+Alt+E
Functions Ctrl+Alt+F
Macros Ctrl+Alt+M
Clipboard Ctrl+Alt+C
Contexts Ctrl+Alt+X
Messages Ctrl+Alt+G
Options Ctrl+Alt+O
Help Ctrl+Alt+H

Keyboard shortcuts for Mathematica toolbar commands.

For descriptions of these commands, see the Toolbar Commands section.

Context Shortcuts

Keyboard shortcuts are available for all commands in the Mathematica Context menu. Context shortcuts all include the Shift
key. They all operate on the current selection in Excel.

Expression Ctrl+Shift+E
Copy Ctrl+Shift+C
Paste Ctrl+Shift+V
Clear Ctrl+Shift+Delete
Function Ctrl+Shift+F
Array Ctrl+Shift+A
Comments Ctrl+Shift+ '
Recalculate Ctrl+Shift+=

Keyboard shortcuts for Mathematica Context menu commands.

For descriptions of these commands, see the Context Commands section.

Workbook Shortcuts

Keyboard shortcuts are available for the following workbook-level operations.

Reevaluate initialization code Ctrl+Enter
Recalculate link formulas Ctrl+=
Unlink / Relink workbook Ctrl+ '

Keyboard shortcuts for workbook operations.

54 ExcelLink

The functionality provided by some of these commands can optionally occur automatically as part of the Evaluate toolbar
command. Related options and buttons can be found on the Mathematica Options ▶ Workbook tab.

Notes

◼ Keyboard shortcuts can be disabled and re-enabled using the Mathematica Options ▶ Interface tab.

ExcelLink 55

Data Types
Overview

Excel cells can contain six different types of data.

Numbers machine-precision double

Dates machine-precision double with special formatting

Strings unicode text

Booleans TRUE , FALSE

Errors #VALUE! , #REF! , ...

Empty empty cell

Native Excel data types.

Wolfram Language data types not natively supported by Excel can be stored as strings in a range formatted as Text.

Integer 1

Rational 1/2

Complex 1 + 2 I

Symbol x

Expression x + y

Wolfram Language data types that can be stored in text cells.

To specify the format of a range, you can use the ExcelFormat function provided by the ExcelLink package. Or, from within

Excel, you can select a format in the Format ▶ Cell... ▶ Number pane or use the Expression toggle command provided by
the MathematicaLink add-in.

Notes

◼ For worksheet functions, such as EVAL or EXPR, inputs are always assumed to contain text expressions, even if Text
formatting has not been applied to input ranges. This assumption makes it easier to build Wolfram Language expressions.
To use data as it is natively stored in Excel, wrap the reference to the data range with the DATA worksheet function.

◼ When a number is stored as Text in Excel, an error flag may appear on the cell. If you find these flags distracting, you can
turn this type of error checking off in the Tools ▶ Options... ▶ Error Checking pane.

Numbers

Excel stores all numbers as machine-precision doubles. A number may appear to be an integer in Excel when no decimal point
is displayed; however, internally the number is stored as a floating point. Whether a decimal point is displayed is a matter of
formatting. See Number Formats for more information.

Maximum and minimum numbers that can be natively stored in Excel are defined by machine-precision limits.

$MaxMachineNumber 1.7976931348623157*^308

$MinMachineNumber 2.2250738585072014*^-308

Excel number limits.

56 ExcelLink

https://reference.wolfram.com/language/ref/Integer.html
https://reference.wolfram.com/language/ref/Rational.html
https://reference.wolfram.com/language/ref/Complex.html
https://reference.wolfram.com/language/ref/Symbol.html
https://reference.wolfram.com/language/ref/Expression.html
https://reference.wolfram.com/language/ref/$MaxMachineNumber.html
https://reference.wolfram.com/language/ref/$MinMachineNumber.html

Outside of this range, numbers can be stored as Wolfram Language text expressions.

Dates

Excel dates are stored as numbers where the integer part represents the day and the fractional part represents the time of day.

0.0 December 30, 1899 (beginning of day)

2.0 January 1, 1900 (beginning of day)

2.5 January 1, 1900 (midday)

36526.0 January 1, 2000 (beginning of day)

36526.5 January 1, 2000 (midday)

How Excel stores date and time information.

What makes a number appear as a date in Excel is a matter of formatting. See Number Formats for more information.

Notes

◼ Excel cells only format dates properly after March 1, 1900. Excel erroneously considers 1900 a leap year, and negative
numbers cannot be formatted as dates in Excel.

◼ The ExcelForm function does not suffer from the same restrictions as Excel cells and can therefore be used to print out

dates before March 1, 1900.

Strings

In Excel, textual data can be entered into cells specifically formatted as Text. It can also be entered into cells with other
formats, such as General. Mathematica Link for Excel uses this formatting difference to distiguish between text expressions
and strings. If a cell is formatted as Text, the content of the cell is considered to be a Wolfram Language expression; other-
wise, the contents are considered to be a Wolfram Language string.

xyz (Text format) xyz

xyz (other format) "xyz"

Excel string mapping.

In Excel, the two versions of the string appear identical. However, there are significant behavioral differences between text
cells and other cells:

◼ Strings assigned to nontext cells pass through an Excel interpreter. The interpreter checks to see if the string being
assigned appears to be a data type it knows about. If so, the string is converted to the identified data type and an appropri-
ate cell format is automatically applied if needed.

◼ Strings assigned to text cells do not pass through the Excel interpreter. They can therefore contain exact numbers, ratio-
nals or anything else that can be stored as a Wolfram Language expression.

As an example, if 1/2 is assigned to a cell with the General format, the rational is interpeted as January 2 of the curent year,
and a date format is automatically assigned to the cell. When 1/2 is assigned to a text cell, the fraction remains as entered.

Notes

◼ For worksheet functions, such as EVAL or EXPR, input ranges are always assumed to contain text expressions, even if the
input range has not been formated as Text. This assumption makes it easy to build Wolfram Language expressions. You
can wrap data ranges with the DATA worksheet function to treat text contained in the range as Wolfram Language strings.

ExcelLink 57

Booleans

Excel Booleans are mapped to corresponding Wolfram Language symbols.

TRUE True

FALSE False

Excel Boolean mapping.

Errors

Excel errors are converted to Wolfram Language strings.

#N/A "#N/A"

#REF! "#REF!"

#VALUE! "#VALUE!"

#NULL! "#NULL!"

#NAME? "#NAME?"

#NUM! "#NUM!"

#DIV/0! "#DIV/0!"

Excel error mapping.

Of these errors, four may be returned by Wolfram Language worksheet functions. In this case, the errors have the following
meanings.

#N/A error or empty found in inputs

#REF! connection error or invalid kernel path

#VALUE! evaluation returned $Failed

#NULL! evaluation returned $Aborted or link was closed

Wolfram Language worksheet function errors.

Notes

◼ For worksheet functions, such as EVAL or EXPR, the #N/A error suppresses further evaluation. To force a range containing
empty cells or errors to be evaluated in the Wolfram Language, you can use the DATA function as an argument wrapper.
DATA(range) is a data range that may contain empty cells or errors. You can then handle the empty values and errors in
your Wolfram Language code.

Empty

Mathematica Link for Excel handles empty cells differently depending on where the cells are located.

non-trailing empty Empty

trailing empty trimmed from range

Excel empty cell mapping.

58 ExcelLink

https://reference.wolfram.com/language/ref/True.html
https://reference.wolfram.com/language/ref/False.html
https://reference.wolfram.com/language/ref/$Failed.html
https://reference.wolfram.com/language/ref/$Aborted.html

For empty cells to be trimmed, an entire trailing row or column within the range must contain nothing but empty cells.

Notes

◼ The trimming of trailing empty cells allows you to easily work with entire rows and columns of data.

ExcelLink 59

Number Formats
Excel number formats allow you to define how a number will appear in your spreadsheet.

1000 General

1.0E+03 0.0E+00

$ 1,000.00 $ #,###.00

100000% 0%

Examples of Excel number formats.

Excel number formats are also used to format dates and time information that has been stored as a number.

January 1, 2000 mmmm d, yyyy

12:00 hh:mm

01-Jan-00 12:00:00 dd-mmm-yy hh:mm:ss

Examples of Excel date formats.

For more examples of Excel number formats, browse the Custom category in the Format ▶ Cells… ▶ Number pane in Excel.

60 ExcelLink

ExcelLink Functions

Excel

Excel[id]
identifies a location to read or write from in Excel.

Excel[id]
reads the contents of id.

Excel[id] = expr

writes expr to id.

Excel[id] =.
clears the contents of id.

Details

◼ The location identified by id can be a range, shape or sheet.

◼ The id can be a name, A1-style address, All, Selection or an Excel object reference.

◼ Assigning graphics, typeset equations or formatted output to a location displays a graphic.

◼ Excel[id] is equivalent to ExcelRead[id].

◼ Excel[id] = expr is equivalent to ExcelWrite[id, expr].

◼ Excel[id] =. is equivalent to ExcelClear[id].

◼ ExcelRange, ExcelShape or ExcelSheet can be used to create an Excel object reference.

◼ Excel object references can be used to provide a specific context for id or to specify a different type of id.

◼ Examples: Excel[A1:C10], Excel[Sheet1] and Excel[ExcelSheet[1]].

Examples

In[1]:= <<ExcelLink`

In[2]:= Excel["A1:C3"] = IdentityMatrix[3]

In[3]:= Excel["A1:C3"]

Out[3]= {{1., 0., 0.}, {0., 1., 0.}, {0., 0., 1.}}

In[4]:= Excel["A1:C3"] =.

In[5]:= data = Table[Random[], {10000}, {10}];

In[6]:= Excel["Sheet1"] = data

ExcelLink 61

https://reference.wolfram.com/language/ref/All.html

In[7]:= data = Excel["Sheet1"];

In[8]:= Dimensions[data]

Out[8]= {10000, 10}

In[9]:= Excel["Sheet1"] =.

ExcelActivate

ExcelActivate[book]
makes book the active book.

ExcelActivate[sheet]
makes sheet the active sheet.

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelActivate[ExcelSheet["Book1","Sheet1"]]

In[3]:= ExcelContext[]

Out[3]= {Book1, Sheet1}

In[4]:= ExcelActivate["Sheet3"]

In[5]:= ExcelContext[]

Out[5]= {Book1, Sheet3}

In[6]:= ExcelActivate["Sheet1"]

In[7]:= ExcelContext[]

Out[7]= {Book1, Sheet1}

ExcelAddress

ExcelAddress[range]
returns the A1-style address of the specified range.

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelAddress[{{1, 1}, {10, 3}}]

Out[2]= A1:C10

ExcelBook

ExcelBook[id]
represents a workbook identified by id. The id can be Active, a name, a full path or an index.

62 ExcelLink

Details

◼ The id can be one of the following:

Active currently active workbook

"Book1" or "Report.xls" the name of the workbook

"C:\\Reports\\Report.xls" the full path of the workbook

1 or -1 a positive or negative position index

◼ The first workbook opened has position 1. The last workbook opened has position -1.

◼ Once a workbook is saved, the .xls suffix is required to identify the workbook by name or path.

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelBooks[]

Out[2]= {-Book: Book1-}

In[3]:= ExcelNameExcelBookActive

Out[3]= Book1

In[4]:= ExcelNew[]

Out[4]= -Book: Book2-

In[5]:= ExcelBooks[]

Out[5]= {-Book: Book1-, -Book: Book2-}

In[6]:= ExcelName[ExcelBook[1]]

Out[6]= Book1

In[7]:= ExcelName[ExcelBook[-1]]

Out[7]= Book2

In[8]:= ExcelClose[]

In[9]:= ExcelBooks[]

Out[9]= {-Book: Book1-}

In[10]:= ExcelCheck[ExcelBook[2]]

Out[10]= False

ExcelLink 63

ExcelBooks

ExcelBooks[]

gives a list of workbooks currently open in Excel.

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelBooks[]

Out[2]= {-Book: Book1-}

In[3]:= ExcelNew[]

Out[3]= -Book: Book2-

In[4]:= ExcelBooks[]

Out[4]= {-Book: Book1-, -Book: Book2-}

In[5]:= ExcelClose[]

ExcelCalculate

ExcelCalculate[]

causes all formula-based calculations in Excel to update.

Details

◼ This function can be useful if Excel has been set to manual calculation mode or if volatile functions, such as random number
generators, are being used.

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelWrite["A1", "=RAND()"]

In[3]:= ExcelRead["A1"]

Out[3]= 0.0145436

In[4]:= ExcelCalculate[]

In[5]:= ExcelRead["A1"]

Out[5]= 0.0438649

In[6]:= ExcelClear["A1"]

ExcelCall

ExcelCall
is an internal function called by all functions that need to communicate with Excel.

64 ExcelLink

ExcelCheck

ExcelCheck[object]
checks if object is valid.

ExcelCheck[object, format]

checks if object has the specified format.

Details

◼ ExcelCheck always returns True or False.

◼ If object is a shape, the format can be "Image", "Text" or "Other".

◼ If object is a sheet, the format can be "Work" or "Chart".

◼ If object is a range, the format can be "General", "Text", a number format or "Mixed".

Examples

In[1]:= <<ExcelLink`

In[2]:= object=ExcelRange["Sheet1","A1"]

Out[2]= -Range: A1-

In[3]:= ExcelCheck[object]

Out[3]= True

In[4]:= object=ExcelRange["Bogus","A1"]

Out[4]= -Range: A1-

In[5]:= ExcelCheck[object]

Out[5]= False

In[6]:= object=ExcelSheet[1]

Out[6]= -Sheet: 1-

In[7]:= ExcelCheck[object, "Work"]

Out[7]= True

In[8]:= ExcelCheckobject, "Chart"

Out[8]= False

ExcelClear

ExcelClear[range]
clears data from the specified range in Excel.

ExcelClear[sheet]
clears all data contained in the specified sheet.

Details

◼ ExcelClear[All] and ExcelClear[Active] both clear all data on the active sheet.

ExcelLink 65

https://reference.wolfram.com/language/ref/True.html
https://reference.wolfram.com/language/ref/False.html

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelWrite["A:A", $Path]

In[3]:= ExcelClear["A:A"]

In[4]:= ExcelWrite["Sheet1", Table[Random[],{1000},{10}]]

In[5]:= ExcelClear["Sheet1"]

ExcelClose

ExcelClose[]

closes the active workbook.

ExcelClose[book]
closes the specified book.

Examples

In[1]:= <<ExcelLink`

In[2]:= book = ExcelNew[]

Out[2]= -Book: Book2-

In[3]:= ExcelBooks[]

Out[3]= {-Book: Book1-, -Book: Book2-}

In[4]:= ExcelClose[book]

In[5]:= ExcelBooks[]

Out[5]= {-Book: Book1-}

ExcelContext

ExcelContext[]

returns a list identifying the current active context.

ExcelContext[object]
returns a list identifying the context of the specified object.

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelActivate["Book1"]

In[3]:= ExcelActivate["Sheet1"]

In[4]:= ExcelContext[]

Out[4]= {Book1, Sheet1}

66 ExcelLink

In[5]:= object=ExcelRange["Book1","Sheet2","A1:C10"]

Out[5]= -Range: A1:C10-

In[6]:= ExcelContextobject

Out[6]= {Book1, Sheet2}

ExcelDate

ExcelDate[value]
converts an Excel date value to a date list {y, m, d, h, n, s}.

ExcelDate[{y, m, d, h, n, s}]

converts a date list to an Excel date value.

Details

◼ Excel dates count days from December 30, 1899.

◼ Time of day information is provided by the fractional part of the date, where 0.5 represents noon.

◼ Excel dates can be printed in various formats using the ExcelForm function.

Examples

In[1]:= <<ExcelLink`

In[2]:= d = Date[]

Out[2]= {2006, 7, 11, 13, 8, 48.6900112}

In[3]:= n = ExcelDate[d]

Out[3]= 38909.5

In[4]:= n // InputForm

Out[4]//InputForm= 38909.54778576389

In[5]:= ExcelForm[n,"dddd, mmm d, yyyy"]

Out[5]= Tuesday, Jul 11, 2006

In[6]:= ExcelForm[n,"h:mm AM/PM"]

Out[6]= 1:08 PM

In[7]:= ExcelDate[n]

Out[7]= {2006, 7, 11, 13, 8, 48.69}

ExcelDelete

ExcelDelete[sheet]
deletes the specified sheet.

ExcelDelete[shape]
deletes the specified shape.

ExcelLink 67

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelSheets[]

Out[2]= {-Sheet: Sheet1-, -Sheet: Sheet2-, -Sheet: Sheet3-}

In[3]:= ExcelInsert["Sheet"]

Out[3]= -Sheet: Sheet4-

In[4]:= ExcelSheets[]

Out[4]= {-Sheet: Sheet1-, -Sheet: Sheet2-, -Sheet: Sheet3-, -Sheet: Sheet4-}

In[5]:= ExcelDelete[ExcelSheet[-1]]

In[6]:= ExcelSheets[]

Out[6]= {-Sheet: Sheet1-, -Sheet: Sheet2-, -Sheet: Sheet3-}

ExcelDialog

ExcelDialog[type]
displays a dialog specified by type.

ExcelDialog[type, title]

displays a dialog with a custom title.

Details

◼ Supported dialog types are given by $ExcelDialogs.

Examples

In[1]:= <<ExcelLink`

In[2]:= $ExcelDialogs

Out[2]= {Range, Open, Save, Files, Folder}

In[3]:= ExcelDialog["Range"]

Out[3]= -Range: B2:C6-

In[4]:= ExcelDialog["Open"]

Out[4]= C:\Documents and Settings\Anton\Desktop\Excel Data Types.xls

In[5]:= ExcelDialog["Save"]

Out[5]= C:\Documents and Settings\Anton\Desktop\New File.xls

In[6]:= ExcelDialog["Files"]

Out[6]= {C:\Documents and Settings\Anton\Desktop\Manager.xls,

C:\Documents and Settings\Anton\Desktop\Temp.xls, C:\Documents and Settings\Anton\Desktop\Test.xls}

68 ExcelLink

In[7]:= ExcelDialog["Folder"]

Out[7]= C:\Documents and Settings\Anton\My Documents

ExcelDirectory

ExcelDirectory["name"]
gives a directory specified by name.

ExcelDirectory[book]
gives the directory of the specified book.

Details

◼ Supported named directories are given by $ExcelDirectories.

◼ If book is unsaved, its directory is given as None.

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelDirectory["Installation"]

Out[2]= C:\Program Files\Microsoft Office\Office10

In[3]:= s = ToFileNameExcelDirectory"Link", "Examples", "Stocks.xls"

Out[3]= C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Examples\Stocks.xls

In[4]:= book = ExcelOpen[s]

Out[4]= -Book: Stocks.xls-

In[5]:= ExcelDirectory[book]

Out[5]= C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Examples

In[6]:= ExcelClose[book]

ExcelFilter

ExcelFilter[range, {filter1, filter2, …}]

applies filters to header fields in range.

ExcelFilter[range, None]
turns off all filters for the specified range.

Details

◼ The first filter is applied to the first field, the second filter to the second field and so on.

◼ Filters can be value strings such as "Q4", or comparison strings such as ">100".

◼ If a filter is All, no filter is applied to the field at that position.

ExcelLink 69

https://reference.wolfram.com/language/ref/None.html
https://reference.wolfram.com/language/ref/All.html

Examples

In[1]:= <<ExcelLink`

In[2]:= s = ToFileNameExcelDirectory"Link", "Examples", "Cities.xls"

Out[2]= C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Examples\Cities.xls

In[3]:= ExcelOpen[s]

Out[3]= -Book: Cities.xls-

In[4]:= rng = ExcelRange["USA", All]

Out[4]= -Range: All-

In[5]:= ExcelFilter[rng, {All, "Nevada"}]

In[6]:= ExcelRead[rng]

Out[6]= {{City, State, Lat, Lon}, {Carson City, Nevada, 39.1667, -119.767}, {Elko, Nevada, 40.8333, -115.783},

{Ely, Nevada, 39.2833, -114.85}, {Las Vegas, Nevada, 36.0833, -115.167}, {Lovelock, Nevada, 40.0667, -118.55},

{Reno, Nevada, 39.5, -119.783}, {Tonopah, Nevada, 38.0667, -117.083}, {Winnemucca, Nevada, 40.9, -117.8}}

In[7]:= ExcelFilter[rng, None]

In[8]:= ExcelClose[s]

ExcelForm

ExcelForm[expr]

prints expr as it would appear in Excel in "General" format.

ExcelForm[expr, "format"]

prints expr as it would appear in the specified format.

Details

◼ The format can be specified using special characters such as "$ #,###.00", "0.0%", or "yyyy-mm-dd hh:mm:ss".

Examples

In[1]:= <<ExcelLink`

In[2]:= v = {3., 1.5*^-15, 1/2, 3 + 5 I, "Hello", Empty, True, False}

Out[2]= 3., 1.5×10-15,
1

2
, 3 + 5 , Hello, Empty, True, False

In[3]:= Map[ExcelForm, v]

Out[3]= {3, 1.5E-15, 0.5, 3 + 5*I, Hello, , TRUE, FALSE}

In[4]:= n = ExcelDate[Date[]]

Out[4]= 38909.6

In[5]:= ExcelForm[n, "dd-mmm-yy hh:mm AM/PM"]

Out[5]= 11-Jul-06 01:36 PM

70 ExcelLink

In[6]:= ExcelForm[5/7, "0.0%"]

Out[6]= 71.4%

In[7]:= ExcelForm[12345, "#,### €"]

Out[7]= 12,345 €

ExcelFormat

ExcelFormat[target]
returns the format of target.

ExcelFormat[target, "format"]

sets the format of the target.

Details

◼ The target can be a range or a sheet.

◼ The format can be "General", "Text" or a number format such as "$ #,###.00", "0.0%" or "yyyy-mm-dd hh:mm:ss".

◼ The format can also be "AutoFit" to adjust column widths in target to display all contents.

◼ If multiple formats exist in target, ExcelFormat[target] returns "Mixed".

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelFormat["A1"]

Out[2]= General

In[3]:= ExcelWrite["A1", .5]

In[4]:= ExcelFormat["A1","0.0%"]

In[5]:= ExcelFormat["A1"]

Out[5]= 0.0%

In[6]:= ExcelFormat["A1", "hh:mm"]

In[7]:= ExcelFormat["A1"]

Out[7]= hh:mm

In[8]:= ExcelFormat["A1", "General"]

In[9]:= ExcelFormat["A1"]

Out[9]= General

In[10]:= ExcelClear["A1"]

ExcelLink 71

ExcelGraphic

ExcelGraphic[graphic, opts, …]

specifies options for how graphic should be displayed in Excel.

Details

◼ Excel[id] = ExcelGraphic[graphic, opts, …] displays graphic with specified options.

◼ Excel[id] = graphic displays graphic using default options.

◼ Options[ExcelGraphic] gives a list of available options.

◼ SetOptions[ExcelGraphic, opts, …] sets the defaults.

Examples

In[1]:= <<ExcelLink`

In[2]:= g = PlotSin[x], x, -Pi, Pi

Out[2]=

In[3]:= Excel["B3"] = g

In[4]:= OptionsExcelGraphic

Out[4]= {ImageSize Automatic, ImageMargins Automatic,

ImageFormat Automatic, ImageResolution Automatic, TextStyle Automatic}

In[5]:= Excel["B3"] = ExcelGraphic[g, ImageFormat->"GIF", ImageSize->{400,300},
ImageMargins->20, TextStyle->{FontFamily->"Arial", FontSize->9}]

In[6]:= Excel["B3"] =.

ExcelInsert

ExcelInsert[]
inserts a sheet in the active book.

ExcelInsert["name"]
inserts a sheet with the specified name.

ExcelInsert[ExcelSheet[id]]
inserts the specified sheet.

ExcelInsert[ExcelShape[id]]
inserts the specified shape.

72 ExcelLink

https://reference.wolfram.com/language/ref/Options.html
https://reference.wolfram.com/language/ref/SetOptions.html

Details

◼ The id can can be a "name" or Automatic.

◼ Option Position can be used to specify the position where the new object is to be inserted.

◼ For sheets, Position can be an existing sheet name or index.

◼ For shapes, Position can be a {top, left} coordinate pair.

◼ Option Format can be used to specify the format of the inserted object.

◼ For sheets, Format can be "Work", "Chart" or a reference to an existing sheet to use as a template.

◼ For shapes, Format can be "Image", "Text" or a reference to an existing shape to use as a template.

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelSheets[]

Out[2]= {-Sheet: Sheet1-, -Sheet: Sheet2-, -Sheet: Sheet3-}

In[3]:= ExcelInsert[]

Out[3]= -Sheet: Sheet4-

In[4]:= ExcelSheets[]

Out[4]= {-Sheet: Sheet1-, -Sheet: Sheet2-, -Sheet: Sheet3-, -Sheet: Sheet4-}

In[5]:= ExcelDelete[ExcelSheet[-1]]

In[6]:= ExcelSheets[]

Out[6]= {-Sheet: Sheet1-, -Sheet: Sheet2-, -Sheet: Sheet3-}

In[7]:= ExcelInsert"New", Position 1

Out[7]= -Sheet: New-

In[8]:= ExcelSheets[]

Out[8]= {-Sheet: New-, -Sheet: Sheet1-, -Sheet: Sheet2-, -Sheet: Sheet3-}

In[9]:= ExcelDelete[ExcelSheet[1]]

In[10]:= ExcelSheets[]

Out[10]= {-Sheet: Sheet1-, -Sheet: Sheet2-, -Sheet: Sheet3-}

ExcelInstall

ExcelInstall[]

starts communications with Excel.

ExcelLink 73

https://reference.wolfram.com/language/ref/Automatic.html
https://reference.wolfram.com/language/ref/Position.html
https://reference.wolfram.com/language/ref/Position.html
https://reference.wolfram.com/language/ref/Position.html
https://reference.wolfram.com/language/ref/Format.html
https://reference.wolfram.com/language/ref/Format.html
https://reference.wolfram.com/language/ref/Format.html

Details

◼ Option Visible specifies if a visible instance of Excel is used. The default is Visible Automatic.

◼ If Visible is Automatic, a visible instance of Excel must already be open to start communications.

◼ If Visible is False, a hidden instance of Excel is launched for private use by the Wolfram System.

◼ By default, ExcelInstall[] is called the first time communication with Excel is required.

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelInstallVisible True

Out[2]= LinkObject[

C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Binaries\ExcelLink.exe,

2, 2]

In[3]:= ExcelNew[]

Out[3]= -Book: Book1-

In[4]:= ExcelBooks[]

Out[4]= {-Book: Book1-}

In[5]:= ExcelClose[]

In[6]:= ExcelUninstall[]

In[7]:= ExcelInstall[Visible->False]

Out[7]= LinkObject[

C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Binaries\ExcelLink.exe,

3, 2]

In[8]:= ExcelNew[]

Out[8]= -Book: Book1-

In[9]:= ExcelBooks[]

Out[9]= {-Book: Book1-}

In[10]:= ExcelUninstall[]

ExcelName

ExcelName[object]
returns the name of the specified object.

74 ExcelLink

https://reference.wolfram.com/language/ref/Visible.html
https://reference.wolfram.com/language/ref/Visible.html
https://reference.wolfram.com/language/ref/Automatic.html
https://reference.wolfram.com/language/ref/Visible.html
https://reference.wolfram.com/language/ref/Automatic.html
https://reference.wolfram.com/language/ref/Visible.html
https://reference.wolfram.com/language/ref/False.html

Examples

In[1]:= <<ExcelLink`

In[2]:= objects = ExcelSheets[]

Out[2]= {-Sheet: Sheet1-, -Sheet: Sheet2-, -Sheet: Sheet3-}

In[3]:= ExcelName /@ objects

Out[3]= {Sheet1, Sheet2, Sheet3}

ExcelNew

ExcelNew[]

creates a new workbook with the default number of sheets.

ExcelNew[i]
creates a book with i sheets.

ExcelNew[{"name1", "name2", …}]

creates a book with the specified named sheets.

ExcelNew["book.xls"]
creates a book using the specified existing book as a template.

Details

◼ Template names must be specified using a full path.

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelBooks[]

Out[2]= {-Book: Book1-}

In[3]:= ExcelNew[]

Out[3]= -Book: Book2-

In[4]:= ExcelClose[]

In[5]:= v = MapToString, Range[2000, 2010]

Out[5]= {2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010}

In[6]:= ExcelNew[v]

Out[6]= -Book: Book3-

In[7]:= ExcelClose[]

In[8]:= s = ToFileNameExcelDirectory"Link", "Templates", "Report.xls"

Out[8]= C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Templates\Report.xls

ExcelLink 75

In[9]:= ExcelNew[s]

Out[9]= -Book: Report1-

In[10]:= ExcelClose[]

ExcelObject

ExcelObject["type", id]

represents an object of the specified type identified by id in the active context.

ExcelObject["type", context]@ ExcelObject["type", id]

provides a context for the object id.

Details

◼ All Excel objects are represented internally in this form.

Examples

In[1]:= <<ExcelLink`

In[2]:= object=ExcelRange["Sheet1", "A1"]

Out[2]= -Range: A1-

In[3]:= InputForm[object]

Out[3]//InputForm= ExcelObject["Sheet", "Sheet1"][ExcelObject["Range", "A1"]]

In[4]:= object=ExcelRange["Book1", "Sheet1", "A1"]

Out[4]= -Range: A1-

In[5]:= InputForm[object]

Out[5]//InputForm= ExcelObject["Book", "Book1"][ExcelObject["Sheet", "Sheet1"][
ExcelObject["Range", "A1"]]]

ExcelOffset

ExcelOffset[range, {rows, cols}]

offsets range by the specified number of rows and columns.

Details

◼ All specifies that range should be offset to the end of contiguous data in that dimension.

◼ None specifies that range should not be offset in that dimension.

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelOffset["A1", {5, None}]

Out[2]= -Range: A6-

76 ExcelLink

https://reference.wolfram.com/language/ref/All.html
https://reference.wolfram.com/language/ref/None.html

In[3]:= ExcelOffset["A:A", {None, 5}]

Out[3]= -Range: F:F-

In[4]:= ExcelOffset["A1:C3", {1, 1}]

Out[4]= -Range: B2:D4-

In[5]:= ExcelWrite["A:A", Range[10]]

In[6]:= ExcelOffset["A1", {All, None}]

Out[6]= -Range: A11-

In[7]:= ExcelClear["A:A"]

ExcelOpen

ExcelOpen["book.xls"]
opens the specified workbook in Excel.

Details

◼ File name book.xls must be specified using a full path.

◼ If it is already open in Excel, the workbook is activated.

◼ Newer Excel file formats such as .xlsx, .xlsm and .xlsb files are also supported.

Examples

In[1]:= <<ExcelLink`

In[2]:= dir = ToFileNameExcelDirectory"Link", "Examples"

Out[2]= C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Examples\

In[3]:= files = FileNames"*.xls", dir;

In[4]:= books = ExcelOpen /@ files

Out[4]= {-Book: Cities.xls-, -Book: Highways.xls-,

-Book: Metals.xls-, -Book: Stocks.xls-, -Book: Waves.xls-, -Book: Wind.xls-}

In[5]:= ExcelClose /@ books

Out[5]= {Null, Null, Null, Null, Null, Null}

ExcelOutput

ExcelOutput[expr, opts]

specifies options for how expr should be output in Excel.

Details

◼ Excel[id] = ExcelOutput[expr, opts, …] displays expr with specified options.

◼ Excel[id] = form[expr] displays expr in the specified form using default options.

ExcelLink 77

◼ Options[ExcelOutput] gives a list of available options.

◼ SetOptions[ExcelOutput, opts, …] sets the defaults.

Examples

In[1]:= <<ExcelLink`

In[2]:= expr = Expand[(x + y)^5]

Out[2]= x5 + 5 x4 y + 10 x3 y2 + 10 x2 y3 + 5 x y4 + y5

In[3]:= Excel["B8"] = OutputForm[expr]

In[4]:= Options[ExcelOutput]

Out[4]= {ImageSize Automatic, ImageMargins Automatic,

ImageFormat Automatic, ImageResolution Automatic, TextStyle Automatic}

In[5]:= Excel["B8"] = ExcelOutput[expr, ImageMargins->10, TextStyle->{FontSize->16}]

In[6]:= Excel["B8"] =.

ExcelPosition

ExcelPosition[range]
returns the position of the top-left cell of range as a {row, col} index pair.

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelPosition["C10"]

Out[2]= {10, 3}

In[3]:= ExcelPosition["A1:C10"]

Out[3]= {1, 1}

ExcelRange

ExcelRange[id]
represents a range identified by id in the active context.

ExcelRange[sheet, id]

represents a range in the specified sheet.

ExcelRange[book, sheet, id]

represents a range in the specified book.

78 ExcelLink

https://reference.wolfram.com/language/ref/Options.html
https://reference.wolfram.com/language/ref/SetOptions.html

Details

◼ The id can be one of the following:

Selection the currently selected range

All all cells in the sheet

"Data_Range" a defined range name

"A1:C10" an A1-style address

{1, 1} a {row, col} index pair

{{1, 1},{10, 3}} a list of two index pairs {top, left}, {bottom, right} defining a rectangular range

◼ See ExcelSheet for a listing of valid id values for sheet.

◼ See ExcelBook for a listing of valid id values for book.

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelSelect[ExcelRange["A1:C5"]]

In[3]:= ExcelAddressExcelRangeSelection

Out[3]= A1:C5

In[4]:= ExcelAddress[ExcelRange[{1, 1}]]

Out[4]= A1

In[5]:= ExcelAddress[ExcelRange[{{1,1},{5,3}}]]

Out[5]= A1:C5

In[6]:= ExcelSize[ExcelRange[All]]

Out[6]= {65536, 256}

ExcelRanges

ExcelRanges[]

gives a list of named ranges in the active sheet.

ExcelRanges[sheet]
gives a list for specified sheet.

ExcelRanges[book]
gives a list of all named ranges in book.

Examples

In[1]:= <<ExcelLink`

In[2]:= s = ToFileNameExcelDirectory"Link", "Examples", "Stocks.xls"

Out[2]= C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Examples\Stocks.xls

In[3]:= book = ExcelOpen[s]

Out[3]= -Book: Stocks.xls-

ExcelLink 79

In[4]:= ExcelRanges[]

Out[4]= {-Range: Stock_History-}

In[5]:= ranges = ExcelRanges[book]

Out[5]= {-Range: Stock_History-, -Range: Stock_History-, -Range: Stock_History-,

-Range: Stock_History-, -Range: Stock_History-, -Range: Stock_History-,

-Range: Stock_History-, -Range: Stock_History-, -Range: Stock_History-, -Range: Stock_History-}

In[6]:= ExcelContext /@ ranges

Out[6]= {{Stocks.xls, AAPL}, {Stocks.xls, ADP}, {Stocks.xls, AIG}, {Stocks.xls, BLDP}, {Stocks.xls, CSCO},

{Stocks.xls, IBM}, {Stocks.xls, JNJ}, {Stocks.xls, MSFT}, {Stocks.xls, SYY}, {Stocks.xls, WMT}}

In[7]:= ExcelClose[book]

ExcelRead

ExcelRead[range]
reads data from specified range in Excel.

ExcelRead[sheet]
reads all data contained in specified sheet.

ExcelRead[shape]
reads the contents of specified shape.

Details

◼ If range includes trailing empty cells, they are ignored.

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelWrite["A1:C3",IdentityMatrix[3]]

In[3]:= ExcelRead["A1:C3"]

Out[3]= {{1., 0., 0.}, {0., 1., 0.}, {0., 0., 1.}}

In[4]:= ExcelRead["A:C"]

Out[4]= {{1., 0., 0.}, {0., 1., 0.}, {0., 0., 1.}}

In[5]:= ExcelRead["Sheet1"]

Out[5]= {{1., 0., 0.}, {0., 1., 0.}, {0., 0., 1.}}

In[6]:= ExcelClear["A1:C3"]

80 ExcelLink

ExcelRefresh

ExcelRefresh[]

refreshes all external data queries and pivot tables in the active book.

ExcelRefresh[book]
refreshes specified book.

Details

◼ External data sources can include text files, webpages or databases.

◼ To set up an external data query in Excel, use the Data ▶ Import External Data commands.

Examples

In[1]:= <<ExcelLink`

In[2]:= s = ToFileNameExcelDirectory"Link", "Examples", "Stocks.xls"

Out[2]= C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Examples\Stocks.xls

In[3]:= ExcelOpen[s]

Out[3]= -Book: Stocks.xls-

In[4]:= ExcelRefresh[]

In[5]:= data = ExcelRead /@ ExcelSheets[];

In[6]:= ExcelClose[s]

ExcelRename

ExcelRename[sheet, name]

renames specified sheet.

ExcelRename[shape, name]

renames specified shape.

Examples

In[1]:= <<ExcelLink`

In[2]:= sheets = ExcelSheets[]

Out[2]= {-Sheet: Sheet1-, -Sheet: Sheet2-, -Sheet: Sheet3-}

In[3]:= ExcelRename["Sheet1", "Summary"]

Out[3]= -Sheet: Summary-

In[4]:= sheets = ExcelSheets[]

Out[4]= {-Sheet: Summary-, -Sheet: Sheet2-, -Sheet: Sheet3-}

In[5]:= ExcelRename["Summary", "Sheet1"]

Out[5]= -Sheet: Sheet1-

ExcelLink 81

In[6]:= sheets = ExcelSheets[]

Out[6]= {-Sheet: Sheet1-, -Sheet: Sheet2-, -Sheet: Sheet3-}

ExcelResize

ExcelResize[range, {rows, cols}]

resizes range to the specified number of rows and columns.

ExcelResize[range, All]
resizes range to include all contiguous data.

Details

◼ None specifies that range should not be resized in that dimension.

◼ All specifies that range should be extended to include all contiguous data in that dimension.

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelResize["A1", {10, None}]

Out[2]= -Range: A1:A10-

In[3]:= ExcelResize["A1", {10, 10}]

Out[3]= -Range: A1:J10-

In[4]:= data = Table[Random[], {10}, {3}];

In[5]:= ExcelWrite["A1:C10", data]

In[6]:= ExcelResize["A1", All]

Out[6]= -Range: A1:C10-

In[7]:= ExcelResize["A1", {All, None}]

Out[7]= -Range: A1:A10-

ExcelResult

ExcelResult
is an internal function used to return lengthy results to Excel.

Details

◼ Options[ExcelResult] gives a list of options that affect how results are returned.

◼ SetOptions[ExcelResult, opts, …] can be used to specify these options.

82 ExcelLink

https://reference.wolfram.com/language/ref/None.html
https://reference.wolfram.com/language/ref/All.html
https://reference.wolfram.com/language/ref/Options.html
https://reference.wolfram.com/language/ref/SetOptions.html

Examples

In[1]:= <<ExcelLink`

In[2]:= Options[ExcelResult]

Out[2]= {MaxCharacters 255, NumberMarks False}

In[3]:= expr = Expand[(x + .8)^9]

Out[3]= 0.134218+ 1.50995 x + 7.54975 x2 + 22.0201 x3 + 41.2877 x4 + 51.6096 x5 + 43.008 x6 + 23.04 x7 + 7.2 x8 + x9

In[4]:= StringLengthToString[InputForm[expr]]

Out[4]= 205

In[5]:= ExcelForm[expr]

Out[5]= 0.134218 + 1.50995*x + 7.54975*x^2 + 22.0201*x^3
+ 41.2877*x^4 + 51.6096*x^5 + 43.008*x^6 + 23.04*x^7 + 7.2*x^8 + x^9

In[6]:= SetOptions[ExcelResult, MaxCharacters 100]

Out[6]= {MaxCharacters 100, NumberMarks False}

In[7]:= ExcelForm[expr]

Out[7]= ExcelResult[1]

In[8]:= SetOptions[ExcelResult, MaxCharacters 255]

Out[8]= {MaxCharacters 255, NumberMarks False}

In[9]:= SetOptions[ExcelResult, NumberMarks True]

Out[9]= {MaxCharacters 255, NumberMarks True}

In[10]:= ExcelForm[expr]

Out[10]= 0.13421772800000006` + 1.5099494400000009`*x + 7.549747200000004`*x^2
+ 22.02009600000001`*x^3 + 41.287680000000016`*x^4 + 51.609600000000015`*x^5
+ 43.00800000000001`*x^6 + 23.040000000000006`*x^7 + 7.2`*x^8 + x^9

In[11]:= SetOptions[ExcelResult, NumberMarks False]

Out[11]= {MaxCharacters 255, NumberMarks False}

ExcelRun

ExcelRun["macro"]
runs specified VBA macro in Excel.

ExcelRun["macro", arg1, arg2, …]

runs macro with the specified arguments.

ExcelLink 83

Examples

If the ExcelLink add-in is currently loaded in Excel, this displays the Mathematica Clipboard window.

In[1]:= <<ExcelLink`

In[2]:= ExcelRun"MathematicaClipboard"

ExcelSave

ExcelSave[]

saves changes to the active workbook.

ExcelSave[book]
saves changes to specified book.

ExcelSave[book, "book.xls"]

saves changes as book.xls.

Details

◼ If book has never been saved, a file name must be specified.

◼ File name book.xls must be specified using a full path.

◼ Newer Excel file formats such as .xlsx, .xlsm and .xlsb files are also supported.

Examples

In[1]:= <<ExcelLink`

In[2]:= book = ExcelNew[{"Data"}]

Out[2]= -Book: Book2-

In[3]:= ExcelWrite["Data", Table[Random[], {100}, {10}]]

In[4]:= s = ToFileNameExcelDirectory["User"], "Temporary.xls"

Out[4]= C:\Documents and Settings\Anton\Desktop\Temporary.xls

In[5]:= book = ExcelSave[book, s]

Out[5]= -Book: Temporary.xls-

In[6]:= ExcelClose[book]

In[7]:= DeleteFile[s]

ExcelSelect

ExcelSelect[range]
selects specified range.

ExcelSelect[shape]
selects specified shape.

84 ExcelLink

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelContext[]

Out[2]= {Book1, Sheet1}

In[3]:= ExcelSelect[ExcelRange["Sheet3", "B2:D5"]]

In[4]:= ExcelContextSelection

Out[4]= {Book1, Sheet3}

In[5]:= ExcelAddressSelection

Out[5]= B2:D5

In[6]:= ExcelSelect[ExcelRange["Sheet1", "A1"]]

ExcelShape

ExcelShape[id]
represents a shape identified by id in the active context.

ExcelShape[sheet, id]

represents a shape in specified sheet.

ExcelShape[book, sheet, id]

represents a shape in specified book.

Details

◼ The id can be one of the following:

Selection the currently selected shape

"Rectangle 1" the name of the shape

1 or -1 a positive or negative position index

◼ The first shape inserted on a sheet has position 1. The last shape inserted on a sheet has position -1.

◼ See ExcelSheet for a listing of valid id values for sheet.

◼ See ExcelBook for a listing of valid id values for book.

Examples

In[1]:= <<ExcelLink`

In[2]:= shape1 = ExcelInsert[ExcelShape["Rectangle 1"]];

In[3]:= shape2 = ExcelInsert[ExcelShape["Rectangle 2"]];

In[4]:= ExcelShapes[]

Out[4]= {-Shape: Rectangle 1-, -Shape: Rectangle 2-}

In[5]:= ExcelName[ExcelShape[1]]

Out[5]= Rectangle 1

ExcelLink 85

In[6]:= ExcelName[ExcelShape[-1]]

Out[6]= Rectangle 2

In[7]:= ExcelSelect[ExcelShape[1]]

In[8]:= ExcelNameExcelShapeSelection

Out[8]= Rectangle 1

In[9]:= ExcelCheck[ExcelShape[5]]

Out[9]= False

In[10]:= ExcelDelete[shape1]

In[11]:= ExcelDelete[shape2]

ExcelShapes

ExcelShapes[]

gives a list of supported shapes in the active sheet.

ExcelShapes[sheet]
gives a list for specified sheet.

ExcelShapes[book]
gives a list of all supported shapes in book.

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelShapes[]

Out[2]= {}

In[3]:= shape = ExcelInsert[ExcelShape["Rectangle 1"]]

Out[3]= -Shape: Rectangle 1-

In[4]:= ExcelShapes[]

Out[4]= {-Shape: Rectangle 1-}

In[5]:= ExcelDelete[shape]

ExcelShare

ExcelShare[]
starts kernel sharing with Excel on a link named "ExcelShare".

Details

◼ You must have the Mathematica Link add-in loaded in Excel to share a kernel with Excel.

◼ ExcelShare[] must be called before connecting from Excel.

◼ In Excel, if your Wolfram System Connection is set to "Automatic", the Mathematica Link add-in will first try to connect
to a link named "ExcelShare" and then launch its own kernel if a link with that name is not available.

86 ExcelLink

◼ In Excel, if your Wolfram System Connection is set to "Shared", the Mathematica Link add-in will try to connect to a link
"ExcelShare" and fail if a link with that name is not available.

◼ Anytime you close a connection from the Excel side, you need to call ExcelShare[] again in the Wolfram System before
starting a new shared kernel session.

◼ ExcelShare[] only works in Mathematica 6.0 or later.

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelShare[]

Once you have connected from the Excel side, you can share definitions of data between Excel and the Wolfram System:

In[3]:= x

Out[3]= 100

The above assumes you defined x as 100 in Excel using a formula, macro or the clipboard.

ExcelSheet

ExcelSheet[id]
represents a sheet identified by id in the active context.

ExcelSheet[book, id]

represents a sheet in the specified book.

Details

◼ The id can be one of the following:

Active the current active sheet

"Sheet1" the name of the sheet

1 or - 1 a positive or negative position index

◼ See ExcelBook for a listing of valid id values for book.

◼ The first sheet in the workbook has position 1. The last sheet in the workbook has position -1.

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelSheets[]

Out[2]= {-Sheet: Sheet1-, -Sheet: Sheet2-, -Sheet: Sheet3-}

In[3]:= ExcelName[ExcelSheet[1]]

Out[3]= Sheet1

In[4]:= ExcelName[ExcelSheet[-1]]

Out[4]= Sheet3

In[5]:= ExcelNameExcelSheetActive

Out[5]= Sheet1

ExcelLink 87

In[6]:= ExcelCheck[ExcelSheet[5]]

Out[6]= False

ExcelSheets

ExcelSheets[]

gives a list of sheets in the active workbook.

ExcelSheets[book]
gives a list for the specified book.

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelSheets[]

Out[2]= {-Sheet: Sheet1-, -Sheet: Sheet2-, -Sheet: Sheet3-}

In[3]:= sheet = ExcelInsert["Sheet"]

Out[3]= -Sheet: Sheet4-

In[4]:= ExcelSheets[]

Out[4]= {-Sheet: Sheet1-, -Sheet: Sheet2-, -Sheet: Sheet3-, -Sheet: Sheet4-}

In[5]:= ExcelDelete[sheet]

ExcelSize

ExcelSize[range]
returns the size of range as {rows, cols}.

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelSize["A1:C10"]

Out[2]= {10, 3}

ExcelStatus

ExcelStatus[text]

displays text in the status bar in Excel.

ExcelStatus[]

restores the status bar to its default state.

88 ExcelLink

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelStatus["Performing analysis..."];
Pause[2];
ExcelStatus["Generating report..."];
Pause[1];
ExcelStatus[];

ExcelTypeset

ExcelTypeset[expr, opts, …]

specifies options for how expr should be typeset in Excel.

◼ Excel[id] = ExcelTypeset[expr, opts, …] displays expr with specified options.

◼ Excel[id] = form[expr] displays expr in the specified form using default options.

◼ Options[ExcelTypeset] gives a list of available options.

◼ SetOptions[ExcelTypeset, opts, …] sets the defaults.

Examples

In[1]:= <<ExcelLink`

In[2]:= expr = Expand[(α + β)^4]

Out[2]= α
4
+ 4 α

3
β + 6 α

2
β
2
+ 4 α β

3
+ β

4

In[3]:= Excel["B3"] = TraditionalForm[expr]

In[4]:= Options[ExcelTypeset]

Out[4]= {ImageSize Automatic, ImageMargins Automatic,

ImageFormat Automatic, ImageResolution Automatic, TextStyle Automatic}

In[5]:= Excel["B3"] = ExcelTypeset[expr, ImageFormat->"WMF", ImageSize->{300,50}, TextStyle->{FontSize->20}]

In[6]:= Excel["B3"] =.

ExcelUninstall

ExcelUninstall[]

ends communications with Excel.

Details

◼ Option Visible specifies if visible instances of Excel should be closed when the link is uninstalled. The default is

Visible Automatic.

◼ If Visible is Automatic, visible instances of Excel are closed if no workbooks are open.

◼ If Visible is True, visible instances are always closed and unsaved changes to open workbooks are discarded.

◼ If Visible is False, visible instances are never closed.

ExcelLink 89

https://reference.wolfram.com/language/ref/Options.html
https://reference.wolfram.com/language/ref/SetOptions.html
https://reference.wolfram.com/language/ref/Visible.html
https://reference.wolfram.com/language/ref/Visible.html
https://reference.wolfram.com/language/ref/Automatic.html
https://reference.wolfram.com/language/ref/Visible.html
https://reference.wolfram.com/language/ref/Automatic.html
https://reference.wolfram.com/language/ref/Visible.html
https://reference.wolfram.com/language/ref/True.html
https://reference.wolfram.com/language/ref/Visible.html
https://reference.wolfram.com/language/ref/False.html

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelInstall[Visible->False]

Out[2]= LinkObject[

C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Binaries\ExcelLink.exe,

2, 2]

In[3]:= $ExcelLink

Out[3]= LinkObject[

C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Binaries\ExcelLink.exe,

2, 2]

In[4]:= ExcelUninstall[]

In[5]:= $ExcelLink

ExcelUnshare

ExcelUnshare[]

ends kernel sharing with Excel.

Details

◼ Calling ExcelUnshare[] from a Wolfram System session is not required. There is no harm in leaving the shared link open
once it is established.

◼ ExcelUnshare[] is automatically called when Excel closes a shared kernel session.

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelShare[]

Out[2]= LinkObject[ExcelShare, 2, 2]

In[3]:= $ExcelShare

Out[3]= LinkObject[ExcelShare, 2, 2]

In[4]:= ExcelUninstall[]

In[5]:= $ExcelShare

90 ExcelLink

ExcelWrite

ExcelWrite["range", data]

writes data to specified range in Excel.

ExcelWrite[sheet, data]

fills sheet with data.

ExcelWrite[range, graphic]

displays a graphic at specified range location.

ExcelWrite[range, form]

displays expression form at specified range location.

ExcelWrite[shape, graphic]

displays a graphic to specified shape.

ExcelWrite[shape, form]

displays expression form to specified shape.

ExcelWrite[shape, "text"]

writes text to specified shape.

Details

◼ If data does not completely fill the range, remaining cells are cleared.

Examples

In[1]:= <<ExcelLink`

In[2]:= ExcelWrite["A1", 1]

In[3]:= ExcelWrite["A1:A3", {1, 2, 3}]

In[4]:= ExcelWrite["A1:C1", {1, 2, 3}]

In[5]:= ExcelWrite["A1:C3", {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}]

In[6]:= ExcelWrite["A1:C3", {{1, 2}, {3, 4}}]

In[7]:= data = Table[Random[], {30}, {30}];

In[8]:= ExcelWrite["Sheet1", data]

In[9]:= ExcelClear["Sheet1"]

ExcelLink 91

In[10]:= ExcelWrite"A1", ListContourPlotdata, ContourLines False

From In[10]:=

5 10 15 20 25 30

5

10

15

20

25

30

In[11]:= ExcelClear["A1"]

ImageFormat

ImageFormat

is an option to ExcelGraphic, ExcelTypeset and ExcelOutput.

MaxCharacters

MaxCharacters

is an option to ExcelResult.

ToExcel

ToExcel
is an internal function used by the link to convert expressions into a form suitable for use in Excel.

$ExcelDialogs

$ExcelDialogs

gives a list of supported named dialogs that can be used with the ExcelDialog function.

Examples

In[1]:= <<ExcelLink`

In[2]:= $ExcelDialogs

Out[2]= {Range, Open, Save, Files, Folder}

In[3]:= ExcelDialog["Folder","Select a folder"]

Out[3]= C:\Documents and Settings\Anton\My Documents

92 ExcelLink

$ExcelDirectories

$ExcelDirectories

gives a list of supported special directories that can be used with the ExcelDirectory function.

Details

◼ "Installation" is the directory where Excel is installed.

◼ "Home" is the default file location in Excel. This is specified in Excel under Tools ▶ Options... ▶ General.

◼ "User" is the directory where Excel user settings are stored.

◼ "Link" is the directory where Mathematica Link for Excel is installed.

Examples

In[1]:= <<ExcelLink`

In[2]:= $ExcelDirectories

Out[2]= {Installation, Home, User, Link}

In[3]:= ExcelDirectory /@ $ExcelDirectories

Out[3]= C:\Program Files\Microsoft Office\Office10, C:\Documents and Settings\Anton\My Documents,

C:\Documents and Settings\Anton\Application Data\Microsoft,

C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink

$ExcelGraphic

$ExcelGraphic

is an internal counter used to display graphics in Excel.

Examples

In[1]:= <<ExcelLink`

In[2]:= $ExcelGraphic

Out[2]= 0

In[3]:= g = PlotSin[x], x, Pi, -Pi

Out[3]=

In[4]:= ExcelForm[g]

Out[4]= ExcelGraphic[1]

ExcelLink 93

In[5]:= $ExcelGraphic

Out[5]= 1

$ExcelLink

$ExcelLink

gives the LinkObject being used to communicate with Excel.

Examples

In[1]:= <<ExcelLink`

In[2]:= $ExcelLink

In[3]:= ExcelInstall[]

Out[3]= LinkObject[

C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Binaries\ExcelLink.exe,

2, 2]

In[4]:= $ExcelLink

Out[4]= LinkObject[

C:\Documents and Settings\Anton\Application Data\Mathematica\Applications\ExcelLink\Binaries\ExcelLink.exe,

2, 2]

In[5]:= ExcelUninstall[]

In[6]:= $ExcelLink

$ExcelOutput

$ExcelOutput

is an internal counter used to display formatted output in Excel.

Examples

In[1]:= <<ExcelLink`

In[2]:= $ExcelOutput

Out[2]= 0

In[3]:= expr = BaseForm[10, 2]

Out[3]//BaseForm= 10102

In[4]:= ExcelForm[expr]

Out[4]= ExcelOutput[1]

In[5]:= $ExcelOutput

Out[5]= 1

94 ExcelLink

https://reference.wolfram.com/language/ref/LinkObject.html

$ExcelResult

$ExcelResult

is an internal counter used to return lengthy results to Excel.

Examples

In[1]:= <<ExcelLink`

In[2]:= $ExcelResult

Out[2]= 0

In[3]:= expr = Expand[(x + 2)^100];

In[4]:= ExcelForm[expr]

Out[4]= ExcelResult[1]

In[5]:= $ExcelResult

Out[5]= 1

$ExcelShare

$ExcelShare

gives the LinkObject being used to share a kernel session with Excel.

Examples

In[1]:= <<ExcelLink`

In[3]:= ExcelShare[]

Out[3]= LinkObject[ExcelShare, 2, 2]

In[4]:= $ExcelShare

Out[4]= LinkObject[ExcelShare, 2, 2]

ExcelLink 95

https://reference.wolfram.com/language/ref/LinkObject.html

$ExcelTypeset

$ExcelTypeset
is an internal counter used to display typeset equations in Excel.

Examples

In[1]:= <<ExcelLink`

In[2]:= $ExcelTypeset

Out[2]= 0

In[3]:= expr = TraditionalForm[Expand[(x + 1/2)^5]]

Out[3]//TraditionalForm= x5 +
5 x4

2
+

5 x3

2
+

5 x2

4
+

5 x

16
+

1

32

In[4]:= ExcelForm[expr]

Out[4]= ExcelTypeset[1]

In[5]:= $ExcelTypeset

Out[5]= 1

96 ExcelLink

