
Algorithmic Derivatives
for GAUSS

TM

Version 1.0

Aptech Systems, Inc.

Information in this document is subject to change without notice and does not
represent a commitment on the part of Aptech Systems, Inc. The software described in
this document is furnished under a license agreement or nondisclosure agreement. The
software may be used or copied only in accordance with the terms of the agreement.
The purchaser may make one copy of the software for backup purposes. No part of this
manual may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, for any purpose other than the
purchaser’s personal use without the written permission of Aptech Systems, Inc.
c©Copyright 2004 by Aptech Systems, Inc., Maple Valley, WA.

All Rights Reserved.

GAUSS, GAUSS Engine, GAUSS Light are trademarks of Aptech Systems, Inc. All
other trademarks are the properties of their respective owners.

Documentation Version: June 2, 2004

Part Number: 004378

Contents

1 Installation 1

1.1 UNIX . 1

1.1.1 Download . 1

1.1.2 CD . 1

1.1.3 Floppy . 2

1.2 Windows/NT/2000 . 2

1.2.1 Download . 2

1.2.2 CD . 3

1.2.3 Floppy . 3

1.3 Differences Between the UNIX and Windows/NT/2000 Versions 3

2 Getting Started 5

2.1 Setup . 5

2.2 Using Algorithmic Derivatives . 6

2.3 Naming Conventions for Procedures with Several Arguments 8

2.4 Adding a Derivative Function . 9

2.4.1 Calling Functions Returning Matrices with Dependent Columns . 10

2.4.2 Calling Functions Returning Matrices with Independent Columns . 10

2.5 Running the Test Example . 11

2.6 Disallowed GAUSS Constructions . 12

2.7 References . 13

3 Algorithmic Derivatives Reference 15

AD . 16

GRADP1D . 17

GRADP4D . 18

GRADP4D 2 1 . 20

GRADP4D 2 2 . 22

Index 25

ii

Installation

Chapter 1

Installation

1.1 UNIX

If you are unfamiliar with UNIX, see your system administrator or system
documentation for information on the system commands referred to below.

1.1.1 Download

1. Copy the .tar.gz file to /tmp.

2. Unzip the file.

gunzip appxxx.tar.gz

3. cd to your GAUSS or GAUSS Engine installation directory. We are assuming
/usr/local/gauss in this case.

cd /usr/local/gauss

4. Untar the file.

tar xvf /tmp/appxxx.tar

1.1.2 CD

1. Insert the Apps CD into your machine’s CD-ROM drive.

1

1. INSTALLATION

2. Open a terminal window.

3. cd to your current GAUSS or GAUSS Engine installation directory. We are
assuming /usr/local/gauss in this case.

cd /usr/local/gauss

4. Use tar to extract the .tar files found on the CD. For example:

tar xvf /cdrom/apps/app_myapps 1.0 unix.tar

However, note that the paths may be different on your machine.

Documentation for the application(s) can be found in the apps/MANUALS subdirectory
of the CD.

1.1.3 Floppy

1. Make a temporary directory.

mkdir /tmp/workdir

2. cd to the temporary directory.

cd /tmp/workdir

3. Use tar to extract the files.

tar xvf device name

If this software came on diskettes, repeat the tar command for each diskette.

4. Read the README file.

more README

5. Run the install.sh script in the work directory.

./install.sh

The directory the files are installed to should be the same as the install directory
of GAUSS or the GAUSS Engine.

6. Remove the temporary directory (optional).

1.2 Windows/NT/2000

1.2.1 Download

Unzip the .zip file into your GAUSS or GAUSS Engine installation directory.

2

Installation

1. INSTALLATION

1.2.2 CD

1. Insert the Apps CD into your machine’s CD-ROM drive.

2. Unzip the .zip files found on the CD to your GAUSS or GAUSS Engine
installation directory, using your current .zip file extraction utility.

Documentation for the application(s) can be found in the MANUALS subdirectory of the
CD.

1.2.3 Floppy

1. Place the diskette in a floppy drive.

2. Call up a DOS window

3. In the DOS window log onto the root directory of the diskette drive. For
example:

A:<enter>

cd\<enter>

4. Type: ginstall source drive target path

source drive Drive containing files to install
with colon included

For example: A:

target path Main drive and subdirectory to install
to without a final \

For example: C:\GAUSS

A directory structure will be created if it does not already exist and the files will
be copied over.

target path\src source code files
target path\lib library files
target path\examples example files

1.3 Differences Between the UNIX and Windows/NT/2000
Versions

• If the functions can be controlled during execution by entering keystrokes from
the keyboard, it may be necessary to press Enter after the keystroke in the
UNIX version.

3

1. INSTALLATION

• On the Intel math coprocessors used by the Windows/NT/2000 machines,
intermediate calculations have 80-bit precision, while on the current UNIX
machines, all calculations are in 64-bit precision. For this reason, GAUSS
programs executed under UNIX may produce slightly different results, due to
differences in roundoff, from those executed under Windows/NT/2000.

4

G
etting Started

Chapter 2

Getting Started

2.1 Setup

ALGORITHMIC DERIVATIVES or AD is a program which takes a GAUSS procedure
that computes a function and produces a GAUSS procedure for computing its
derivative.

AD needs the Java Runtime Enviroment (JRE) V1.4.1 or a later version in order to
run. If you do not already have JRE 1.4.1 installed, you can download it for free from
Sun at http://java.sun.com/j2se/1.4.1/download.html Follow the instructions to
install the JRE and add the bin directory containing the java.exe to your path. E.g. on
a Windows machine:

path=%path%;C:\Program Files\Java\j2re1.4.1\bin

GAUSS 6.0.25+ is required to use AD.

In order to use AD, the AD library must be active. This is done by including ad in the
library statement at the top of your program or command file:

library ad;

This enables GAUSS to find the AD procedures.

You will also need to include the AD structure definition file

#include ad.sdf;

5

2. GETTING STARTED

at the top of the command file.

The version number of each module is stored in a global variable:

ad ver 3×1 matrix, the first element contains the major version number of the
AD module, the second element the minor version number, and the third
element the revision number.

If you call for technical support, you may be asked for the version number of your copy
of this module.

2.2 Using Algorithmic Derivatives

AD is a program for generating a GAUSS procedure to compute derivatives from a
GAUSS procedure that computes a function value. If the input function procedure
returns a scalar value given a K × 1 input vector, the output derivative procedure
computes a 1×K gradient. If the input function returns an N × 1 vector given a K × 1
input vector, the output derivative procedure computes an N ×K Jacobian matrix.

First, copy the input function procedure to a separate file. Second, from the command
line enter

ad file_name d_file_name

where file_name is the name of the file containing the input function procedure, and
d_file_name is the name of the file containing the output derivative procedure.

If the input function procedure is named fct, the output derivative procedure has the
name d_fct if the function procedure has a single argument. If the function procedure
has two arguments, the derivative procedure is given the name d 1 fct where the
addition to the prefix indicates that the derivative is with respect to the first argument.

For example, put the following function into a file called lpr.fct:

proc lpr(x,z);

local s,m,u;

s = x[4];

m = z[.,2:4]*x[1:3,.];

u = z[.,1] ./= 0;

retp(u.*lnpdfmvn(z[.,1]-m,s) + (1-u).*(lncdfnc(m/sqrt(s))));

endp;

Then enter the following at the GAUSS command line

6

G
etting Started

2. GETTING STARTED

library ad;

ad lpr.fct d_lpr.fct;

If successful, the following is printed to the screen

java -jar d:\gauss6.0\src\gauss_ad.jar lpr.fct d_lpr.fct

and the derivative procedure is written to file named d_lpr.fct:

/* Version:1.0 - May 15, 2004 */

/* Generated from:lpr.fct */

/* Taking derivative with respect to argument 1 */

Proc(1)=d_1_lpr(x, z);

Clearg _AD_fnValue;

Local s, m, u;

s = x[(4)] ;

Local _AD_t1;

_AD_t1 = x[(1):(3),.] ;

m = z[.,(2):(4)] * _AD_t1;

u = z[.,(1)] ./= 0;

_AD_fnValue = (u .* lnpdfmvn(z[.,(1)] - m, s)) + ((1 - u) .*

lncdfnc(m / sqrt(s)));

/* retp(_AD_fnValue); */

/* endp; */

struct _ADS_optimum _AD_d__AD_t1 ,_AD_d_x ,_AD_d_s ,_AD_d_m

,_AD_d__AD_fnValue;

/* _AD_d__AD_t1 = 0; _AD_d_s = 0; _AD_d_m = 0; */

_AD_d__AD_fnValue = _ADP_d_x_dx(_AD_fnValue);

_AD_d_s = _ADP_DtimesD(_AD_d__AD_fnValue,

_ADP_DplusD(_ADP_DtimesD(_ADP_d_xplusy_dx(u .* lnpdfmvn(z[.,(1)] - m, s),

(1 - u) .* lncdfnc(m / sqrt(s))), _ADP_DtimesD(_ADP_d_ydotx_dx(u, lnpdfmvn(

z[.,(1)] - m, s)), _ADP_DtimesD(_ADP_internal(d_2_lnpdfmvn(z[.,(1)] - m,

s)), _ADP_d_x_dx(s)))), _ADP_DtimesD(_ADP_d_yplusx_dx(u .* lnpdfmvn(

z[.,(1)] - m, s), (1 - u) .* lncdfnc(m / sqrt(s))),

_ADP_DtimesD(_ADP_d_ydotx_dx(1 - u, lncdfnc(m / sqrt(s))),

_ADP_DtimesD(_ADP_d_lncdfnc(m / sqrt(s)), _ADP_DtimesD(_ADP_d_ydivx_dx(m,

sqrt(s)), _ADP_DtimesD(_ADP_d_sqrt(s), _ADP_d_x_dx(s))))))));

_AD_d_m = _ADP_DtimesD(_AD_d__AD_fnValue,

_ADP_DplusD(_ADP_DtimesD(_ADP_d_xplusy_dx(u .* lnpdfmvn(z[.,(1)] - m, s),

(1 - u) .* lncdfnc(m / sqrt(s))), _ADP_DtimesD(_ADP_d_ydotx_dx(u, lnpdfmvn(

z[.,(1)] - m, s)), _ADP_DtimesD(_ADP_internal(d_1_lnpdfmvn(z[.,(1)] - m,

s)), _ADP_DtimesD(_ADP_d_yminusx_dx(z[.,(1)] , m), _ADP_d_x_dx(m))))),

_ADP_DtimesD(_ADP_d_yplusx_dx(u .* lnpdfmvn(z[.,(1)] - m, s), (1 - u) .*

lncdfnc(m / sqrt(s))), _ADP_DtimesD(_ADP_d_ydotx_dx(1 - u, lncdfnc(m / sqrt(s)

)), _ADP_DtimesD(_ADP_d_lncdfnc(m / sqrt(s)), _ADP_DtimesD(_ADP_d_xdivy_dx(m,

7

2. GETTING STARTED

sqrt(s)), _ADP_d_x_dx(m)))))));

/* u = z[.,(1)] ./= 0; */

_AD_d__AD_t1 = _ADP_DtimesD(_AD_d_m, _ADP_DtimesD(_ADP_d_yx_dx(

z[.,(2):(4)] , _AD_t1), _ADP_d_x_dx(_AD_t1)));

Local _AD_sr_x, _AD_sc_x;

_AD_sr_x = _ADP_seqaMatrixRows(x);

_AD_sc_x = _ADP_seqaMatrixCols(x);

_AD_d_x = _ADP_DtimesD(_AD_d__AD_t1, _ADP_d_x2Idx_dx(x,

_AD_sr_x[(1):(3)] , _AD_sc_x[0]));

Local _AD_s_x;

_AD_s_x = _ADP_seqaMatrix(x);

_AD_d_x = _ADP_DplusD(_ADP_DtimesD(_AD_d_s, _ADP_d_xIdx_dx(x,

_AD_s_x[(4)])), _AD_d_x);

retp(_ADP_external(_AD_d_x));

endp;

If there’s a syntax error in the input function procedure, the following is written to the
screen

java -jar d:\gauss6.0\src\gauss_ad.jar lpr.fct d_lpr.fct

Command ’java -jar d:\gauss6.0\src\gauss_ad.jar cmlad3.fct d_lpr.fct’ exit status 1

the exit status 1 indicating that an error has occurred. The output file then contains
the reason for the error:

/* Version:1.0 - May 15, 2004 */

/* Generated from:lpr.fct */

/* Taking derivative with respect to argument 1 */

proc lpr(x,z);

local s,m,u;

s = x[4];

m = z[.,2:4]*x[1:3,.];

u = z[.,1] ./= 0;

retp(u.*lnpdfmvn(z[.,1]-m,s) + (1-u).*(lncdfnc(m/sqrt(s)));

Error: lpr.fct:12:63: expecting ’)’, found ’;’

2.3 Naming Conventions for Procedures with Several
Arguments

For a function procedure with a single argument,

8

G
etting Started

2. GETTING STARTED

proc fct(x);

/* code */

endp;

in a file called, for example, fct.src with a single argument, the following

ad fct.src d_fct.src

produces a derivative procedure

proc d_fct(x);

/* code */

endp;

in the file d_fct.src with the same single argument.

For a function procedure with two arguments,

proc fct(x,y);

/* code */

endp;

produces a derivative procedure

proc d_1_fct(x);

/* code */

endp;

where the “ 1 ” indicates the derivative is taken with respect to the first argument.

By default, the derivative is with respect to the first argument. To produce the
derivative with respect to the second argument, add a “ 2 ” to the name of the file that
will contain the derivative procedure. For example,

ad fct.src d_2_fct.src

The derivative procedure will then have the name

proc d_2_fct(b,x);

/* code */

endp;

2.4 Adding a Derivative Function

The function procedure may contain calls to GAUSS functions that haven’t yet been
included in AD. Or it may contain calls to functions you have written. AD will need to
know how to compute the derivatives of these functions before being able to produce
the derivative procedure. This section describes several methods for doing this.

9

2. GETTING STARTED

2.4.1 Calling Functions Returning Matrices with Dependent Columns

The derivative of the called function must be computed numerically. Add two
procedures to the ad.src file in the src subdirectory:

proc _ADP_utility_userfct(x);

retp(userfct(x));

endp;

proc d_userfct(x);

retp(gradp4d(&_ADP_utility_userfct,x));

endp;

where userfct is the name of the called function. For example, for the GAUSS invpd
function,

proc _ADP_utility_invpd(x);

retp(invpd(x));

endp;

proc d_invpd(x);

retp(gradp4d(&_ADP_utility_invpd,x));

endp;

2.4.2 Calling Functions Returning Matrices with Independent Columns

Most functions, for example, the GAUSS log function, return matrices that are
independent. Their derivatives can be provided either numerically or analytically.

Analytical

For example, the following computes the derivatives for the log function. For your own
function change “log” below to the name of your function, substitute the calculation of
the derivative for the appropriate line, and add these procedures to the ad.src file:

proc(1) = d_log(x);

retp(_ADP_external(_ADP_d_log(x)));

endp;

proc(1) = _ADP_d_log(x);

local xCols,xRows;

xCols = cols(x);

xRows = rows(x);

x = 1 ./ (ln(10) .* vec(x));

retp(_ADP_putDiag(xCols|xCols|xRows|xRows,x));

endp;

Note that the input matrix is “vec-ed” after the number of rows and columns have been
recorded.

10

G
etting Started

2. GETTING STARTED

Numerical for User-Provided Called Function

gradp1d is a function provided in AD for computing the derivative of a function
returning a matrix with independent columns. Substitute your own called function
name for “userfct”.

proc(1) = d_userfct(x);

retp(_ADP_external(_ADP_d_userfct(x)));

endp;

proc(1) = _ADP_d_userfct(x);

local xCols,xRows;

xCols = cols(x);

xRows = rows(x);

x = gradp1d(&userfct,x);

retp(_ADP_putDiag(xCols|xCols|xRows|xRows,x));

endp;

Numerical for GAUSS Called Function

In order to handle a GAUSS function, a wrapper function needs to be written.

proc(1) = d_log(x);

retp(_ADP_external(_ADP_d_log(x)));

endp;

proc _ADP_utility_log(x);

retp(log(x));

endp;

proc(1) = _ADP_d_log(x);

local xCols,xRows;

xCols = cols(x);

xRows = rows(x);

x = gradp1d(&_ADP_utility_log,x);

retp(_ADP_putDiag(xCols|xCols|xRows|xRows,x));

endp;

2.5 Running the Test Example

The example_procs subdirectory has a number of files containing function procedures
(for example, test1.src). When run in GAUSS the example file test.e generates files

11

2. GETTING STARTED

containing derivative procedures using the files with the function procedures (for
example, d_test1.src).

Additionally, the example file d_test.e tests the accuracy of the resulting derivative
procedures. Thus after running test.e, run d_test.e and an accuracy report is
printed to the screen.

2.6 Disallowed GAUSS Constructions

The following GAUSS language constructions are not allowed in the input procedure

Label: statement

CLEARG

DLLCALL

FORMAT

IF

ELSEIF

ELSE

ENDIF

FOR

ENDFOR

DO

WHILE

UNTIL

ENDO

BREAK

CONTINUE

GOTO

GOSUB

12

G
etting Started

2. GETTING STARTED

2.7 References

Griewank, Andreas, Principles and Techniques of Algorithmic Differentiation, SIAM,
2000.

13

2. GETTING STARTED

14

AD Reference

Chapter 3

Algorithmic Derivatives Reference

15

AD 3. ALGORITHMIC DERIVATIVES REFERENCE

Purpose

Generates a procedure for computing derivatives from a procedure that computes a
function.

Library

ad

Format

ad infile name outfile name

Input

infile name string, name of file containing procedure computing function

outfile name string, name of file into which the derivative procedure is to be put

Example

library ad

ad fct.src d_fct.src

16

AD Reference

3. ALGORITHMIC DERIVATIVES REFERENCE GRADP1D

Purpose

Computes the gradient vector defined in a procedure. Single-sided (forward difference)
gradients are computed.

Library

ad

Format

g = GRADP1D(&fct ,x)

Input

&fct a pointer to a procedure that evaluates a function given x

proc fct(x);

/* function evaluation here */

retp(result);

endp;

This function must return a vector or a matrix with independent
columns.

x K × 1 vector, values at which to evaluate the function

Output

g M × 1 vector, derivatives of function evaluated at x where M is the
number of columns of the matrix returned by fct .

Example

proc myfunc(x);

retp(lngamma(x));

endp;

x0 = { 0.1 0.2,

0.4 0.5 };

gradp1d(&myfunc,x0);

-10.4238

-2.5614

-5.2890

-1.9635

See also

gradp4d, gradp4d 2 1, gradp4d 2 2, gradp, hessp

17

GRADP4D 3. ALGORITHMIC DERIVATIVES REFERENCE

Purpose

Computes the gradient vector or matrix (Jacobian) of a matrix-valued function defined
in a procedure. Single-sided (forward difference) gradients are computed.

Library

ad

Format

g = GRADP4D(&fct ,x)

Input

&fct a pointer to a procedure that evaluates a function given x

proc fct(x);

/* function evaluation here */

retp(result);

endp;

x K × J vector, values at which to evaluate the function

Output

g scalar, 1×K vector, Q×K matrix, L× Q×K array or P × L ×Q×K
array, derivatives of function evaluated at x.

If x is a K × 1 vector and fct(x) is a 1× 1 scalar, the result g is row
vector [1,K] of gradients

If x is a K × 1 vector and fct(x) is an N × 1 vector, the result g is
matrix [N,K] of cross gradients

If x is a matrix K × J and fct(x) is an N × 1 vector, the result g is
3D matrix [J,N,K]

If x is a matrix K × J and fct(x) is a matrix N ×M , the result g is
4D matrix [M,J,N,K]

Remarks

gradp4d will return a row for every row that is returned by fct . For instance, if fct
returns a 1× 1 result, then gradp4d will return a 1×K row vector. This allows the
same function to be used where N is the number of rows in the result returned by fct .
Thus, for instance, gradp4d can be used to compute the Jacobian matrix of a set of
equations.

Example

18

AD Reference

3. ALGORITHMIC DERIVATIVES REFERENCE GRADP4D

proc myfunc(x);

retp(x*x’);

endp;

x0 = { 0.1 0.2 0.3,

0.4 0.5 0.6 };

gradp4d(&myfunc,x0);

Plane [1,1,.,.]

0.20 0.00

0.40 0.10

Plane [1,2,.,.]

0.40 0.00

0.50 0.20

Plane [1,3,.,.]

0.60 0.00

0.60 0.30

Plane [2,1,.,.]

0.40 0.10

0.00 0.80

Plane [2,2,.,.]

0.50 0.20

0.00 1.00

Plane [2,3,.,.]

0.60 0.30

0.00 1.20

See also

gradp1d, gradp4d 2 1, gradp4d 2 2, gradp, hessp

19

GRADP4D 2 1 3. ALGORITHMIC DERIVATIVES REFERENCE

Purpose

Computes 4-dimensional numerical derivatives.

Library

ad

Format

g = GRADP4D 2 1(&fct ,x ,y)

Input

&fct a pointer to a procedure that evaluates a function given x and y

proc fct(x,y);

/* function evaluation here */

retp(result);

endp;

x K × L matrix, values at which to evaluate the function

y M ×N matrix

Output

g scalar, 1×K vector, Q×K matrix, L× Q×K array or P × L ×Q×K
array, derivatives of function evaluated at x.

If x is a K × 1 vector and fct(x ,y) is a 1× 1 scalar, the result g is
row vector [1,K] of gradients

If x is a K × 1 vector and fct(x ,y) is an N × 1 vector, the result g is
matrix [N,K] of cross gradients

If x is a matrix K × J and fct(x ,y) is an N × 1 vector, the result g is
3D matrix [J,N,K]

If x is a matrix K × J and fct(x ,y) is a matrix N ×M , the result g
is 4D matrix [M,J,N,K]

Remarks

gradp4D 2 1 will return a row for every row that is returned by fct . For instance, if fct
returns a 1× 1 result, then gradp4D 2 1 will return a 1×K row vector. This allows
the same function to be used where N is the number of rows in the result returned by
fct . Thus, for instance, gradp4D 2 1 can be used to compute the Jacobian matrix of a
set of equations.

Example

20

AD Reference

3. ALGORITHMIC DERIVATIVES REFERENCE GRADP4D 2 1

proc myfunc(x,y);

retp(x * y);

endp;

x0 = { 0.1 0.2 0.3,

0.4 0.5 0.6 };

y = { 1 4,2 5,3 6 };

gradp4d_2_1(&myfunc,x0,y);

Plane [1,1,.,.]

1.00 0.00

0.00 1.00

Plane [1,2,.,.]

2.00 0.00

0.00 2.00

Plane [1,3,.,.]

3.00 0.00

0.00 3.00

Plane [2,1,.,.]

4.00 0.00

0.00 4.00

Plane [2,2,.,.]

5.00 0.00

0.00 5.00

Plane [2,3,.,.]

6.00 0.00

0.00 6.00

See also

gradp4d 2 2, gradp4d, gradp, hessp

21

GRADP4D 2 2 3. ALGORITHMIC DERIVATIVES REFERENCE

Purpose

Computes 4-dimensional numerical derivatives.

Library

ad

Format

g = GRADP4D 2 2(&fct ,x ,y)

Input

&fct a pointer to a procedure that evaluates a function given x and y

proc fct(x,y);

/* function evaluation here */

retp(result);

endp;

x M ×N matrix

y K × L matrix, values at which to evaluate the function

Output

g scalar, 1×K vector, Q×K matrix, L× Q×K array or P × L ×Q×K
array, derivatives of function evaluated at y.

If y is a K × 1 vector and fct(x ,y) is a 1× 1 scalar, the result g is
row vector [1,K] of gradients

If y is a K × 1 vector and fct(x ,y) is an N × 1 vector, the result g is
matrix [N,K] of cross gradients

If y is a matrix K × J and fct(x ,y) is an N × 1 vector, the result g is
3D matrix [J,N,K]

If y is a matrix K × J and fct(x ,y) is a matrix N ×M , the result g
is 4D matrix [M,J,N,K]

Remarks

gradp4D 2 2 will return a row for every row that is returned by fct . For instance, if fct
returns a 1× 1 result, then gradp4D 2 2 will return a 1×K row vector. This allows
the same function to be used where N is the number of rows in the result returned by
fct . Thus, for instance, gradp4D 2 2 can be used to compute the Jacobian matrix of a
set of equations.

Example

22

AD Reference

3. ALGORITHMIC DERIVATIVES REFERENCE GRADP4D 2 2

proc myfunc(x,y);

retp(x * y);

endp;

x = { 0.1 0.2 0.3,

0.4 0.5 0.6 };

y0 = { 1 4,2 5,3 6 };

gradp4d_2_2(&myfunc,x,y0);

Plane [1,1,.,.]

0.10 0.20 0.30

0.40 0.50 0.60

Plane [1,2,.,.]

0.00 0.00 0.00

0.00 0.00 0.00

Plane [2,1,.,.]

0.00 0.00 0.00

0.00 0.00 0.00

Plane [2,2,.,.]

0.10 0.20 0.30

0.40 0.50 0.60

See also

gradp4D 2 1, gradp4d, gradp, hessp

23

GRADP4D 2 2 3. ALGORITHMIC DERIVATIVES REFERENCE

24

Index

Index

AD, 16

D

disallowed statements, 12

G

GRADP1D, 17
GRADP4D, 18
GRADP4D 2 1, 20
GRADP4D 2 2, 22

I

Installation, 1

U

UNIX, 1, 3

W

Windows/NT/2000, 2, 3

