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Getting Started 1
1.1 Overview

GAUSS Data Tool (GDT) is a standalone program for working with GAUSS data sets.
GDT loads columns of a data set into a workspace as vectors where they can be
transformed or modified using simple intuitive statements. A variety of simulation models
can create new data sets and, using single or multiple imputations, missing data can be
included in new versions of data sets.

1.2 GAUSS Data Tool Basics

Within the GDT session, GDT creates a workspace for each open data set and then loads
that workspace by placing each data set variable in a separate N × 1 column vector.

For a list of available GDT commands, enter:
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help

For help on a specific command, enter:

help command name

In the Windows GUI, to display the dialog interface for a command, type:

command name -

For example:

sort -

To list the data sets in the current directory, enter:

ld

To change directories, enter:

cd directory

To open a data set, enter:

open file name
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where file name is the name of the file containing the desired data set in the
current directory.

Or

open file path

where file path is the path of the desired data set.

Example:

open freqdata

open /data/freqdata

Each open data set has a handle, which is used to refer to the data set in many GDT
commands. Most GDT commands work on the active data set. A data set becomes the
active data set when it is opened or specified in the use command.

To make an open data set the active data set, enter:

use handle

where handle is the handle of an open data set.

To see the list of open data sets, enter:

open

In the resulting list, the handle is shown at the left while the active data set is indicated
with a right angle bracket (>) . An asterisk (*) indicates the data has been modified since
the data set was opened or committed.

For a list of variables in the active data set, enter:
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lv

For descriptive statistics on the active data set, enter:

stats

Transformations on the variables are possible with simple assignment statements.

Example: The following statement modifies the active data set variable x1 by
changing each element to its exponential.

x1 = exp(x1)

To save active data set changes to the disk data set file, enter:

commit

To discard active data set changes without saving them to the disk data set file, enter:

rollback

1.3 User Interfaces

1.3.1 Windows Graphical User Interface

Screen Layout

Within the Windows GDT session, program output is displayed in the screen area above
the GDT prompt. This area is read-only and keyboard entries here will automatically

1-4
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move the cursor to the GDT prompt and begin input. However, text in the output area can
be copied and pasted to the input area (the GDT prompt line and any lines below it) or to
other Windows applications.

Basic Input Process

GDT commands and statements are entered at the GDT prompt. Pressing [ENTER] after
entering a command or statement causes that statement or command to be executed.

Each executed command and statement of the GDT session is recorded in the command
history. To retrieve a previously issued command or statement, use [CTRL]+[UP
ARROW] and [CTRL]+[DOWN ARROW] to scroll backward and forward through the
command history. The command history only contains commands and statements from
the current GDT session.

The following are graphical interface commands:

cls Clears the entire screen.

cd Changes the current directory; if no arguments are included,
the current directory is set to the user’s home directory.

dir Display directory listing–similar to the DOS ’dir’ command.

dos, shell Spawns a DOS shell.

explore Invoke the Windows Explorer file browser application.

[CTRL]+[UP ARROW] Scrolls backward through the command history to
reuse a previously issued command.

[CTRL]+[DOWN ARROW] Scrolls forward through the command history to
reuse a previously issued command.

Long lines can be extended by adding a \ to the end of a line.
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Multi-line Input

The syntax for several GDT statements requires multiple line entries.

To enter multi-line mode, do one of the following steps at the GDT prompt.

Press [CTRL]+[ENTER].

Or

Enter a backslash (\).

Result: GDT enters multi-line mode by creating an input line with a right
angle bracket (>) at the left.

After each line entry, press [ENTER].

Result: GDT adds a new input line.

To edit a line entry, move the cursor to the desired line then modify the line content.

When all line entries have been entered and desired changes made, exit multi-line mode
by doing one of the following steps:

Press [ESC].

Result: GDT exits multi-line mode without saving the line entries
to the command history or executing them.

Or
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Press [ENTER] on the new empty line.

Result: GDT saves line entries to the command history then exits
multi-line mode without executing the lines.

Or

Enter a forward slash (/) on the new empty line.

Result: GDT saves the line entries to the command history, exits
multi-line mode, and executes the lines.

Note: The forward slash (/) does not become a line entry.

1.3.2 Terminal Interface

Screen Layout

Within the Terminal GDT session, program output is displayed in the screen area above
the GDT prompt. Since this is a read-only area, the cursor can only be placed within the
GDT prompt input area. However, text in the output area can be copied and pasted to the
GDT prompt input area or other Terminal applications.

Basic Input Process

GDT commands and statements are entered at the GDT prompt. Pressing [ENTER] after
entering a command or statement causes that statement or command to be executed.

Long lines can be extended by adding a \ to the end of a line.
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Multi-line Input

The syntax for several GDT statements requires multiple line entries.

Several line-editing commands reference the current line. The current line is the last line
in the buffer that was accessed.

To enter multi-line mode:

Enter a backslash (\) all by itself at the GDT prompt.

Result: GDT enters multi-line mode by creating an input line with
a line number at the left; this line number is used when referencing
a particular line in other line-editing commands.

After each line entry, press [ENTER].

Result: GDT adds the line entry to the buffer and creates a new
input line with an incremented line number.

When all line entries have been entered, exit multi-line mode by doing one of
the following steps.

Press [ENTER] at the new input line.

Result: GDT exits multi-line mode without executing the buffer
content.

Or

Enter a forward slash (/) on the new empty line.
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Result: GDT exits multi-line mode and executes the buffer content.

Note: The forward slash does not become a line entry.

Buffer content remains available for execution or editing until multi-line mode is entered
again or the clear line-editing command is entered.

Edit the buffer content by entering the following commands in regular (non-multi-line)
mode.

a Appends text to the end of the current line.

del [n] Deletes the current line or line number n.

clear Deletes all lines from the line buffer.

ia Inserts a line after the current line and makes the new line the
current line.

ib Inserts a line before the current line and makes the new line the
current line.

l Lists all line entries in the buffer; the asterisk (*) in the list
indicates which line is the current line.

line no. Lists the specified line number and makes it the current line.

/ Executes previous buffer contents.

\ Clears previous buffer contents and enters multi-line mode.

The following non-line-editing commands are entered in multi-line mode.

/ Exits multi-line mode and executes the buffer contents; does
not become a line entry.

[ENTER] Exits multi-line mode without executing the buffer content;
buffer content remains available for execution.

1-9
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Example

Windows Graphical User Interface (GUI):

( gdt . ) \

> model linear

> file test

> depvar Y1

> indvar X1,X2

> beta .5,.5

> open

> /

( gdt test . )

Terminal Interface

Simple multiple line entry:

( gdt ) \

1 model linear

2 file test

3 depvar Y1

4 indvar X1,X2

5 beta .5,.5

6 open

7 /

Line entry and editing:

( gdt test . )

1-10
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( gdt . ) \

1 This is line one.

2 This is line two.

3 This is line three

4

( gdt . ) l

1 This is line one.

2 This is line two.

3* This is line three

( gdt . ) a this is appended to line three

3* This is line threethis is appended to line three

( gdt . ) l

1 This is line one.

2 This is line two.

3* This is line threethis is appended to line three

( gdt . ) 1

1* This is line one.

( gdt . ) l

1* This is line one.

2 This is line two.

3 This is line threethis is appended to line three

( gdt . ) del 3

( gdt . ) l

1* This is line one.

2 This is line two.

( gdt . ) ib This is the new line one

( gdt . ) l

1* This is the new line one

2 This is line one.

3 This is line two.

( gdt . )

1.4 Scalar and Element by Element Operations

GAUSS has two versions of certain operators:
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Scalar-returning operators, like >=, return a single 1 or 0 (true or false) result
depending on whether every element in the left operand matches the
comparison requirements with the corresponding elements in the right operand.

Example: z = x >= y

Result:

z will be set to 1 if every element in x is >= the
corresponding element in y.

z will be set to 0 if any element in x is not >= the
corresponding element in y.

Element by element operators, like .>=, return a matrix whose values are 1 or
0 (true or false) depending on whether the elements in the left operand match
the comparison requirements with the corresponding elements in the right
operand.

Example: z = x . >= y

Result: Matrix z is created as follows:

For every element in x that is >= the corresponding y
element, the corresponding z element is set to 1.

For every element in x that is not >= the corresponding
y element, the corresponding z element is set to 0.

The allops and dotops commands toggle between non-dot (scalar) and dot (element by
element) interpretations of these operators in transformation expressions. This affects
comparison and logical operators as well as * and /.
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Example:

With allops in effect, x1 >= x2 will return a scalar result and x1 . >= x2
will return an element by element result.

With dotops in effect, x1 >= x2 will behave the same as x1 . >= x2, which
returns an element by element result.

Code inside procedures is not affected by this setting.

For a more detailed discussion of element by element operations, refer to the Element by
Element Operators section of the GAUSS Users Guide.

1.5 Simulating Data

The model command is used to generate simulated data sets. The syntax for a default
simulation is:

model model name

where model name is the name of an available model.

For a complete list of available model names for your GDT version, enter:

help model

For help about a specific model, enter:

help model model name
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Each model type has a variety of options that are available for generating simulated data
with specific properties. These options are specified using multi-line mode, described in
User Interfaces (Section1.3).

Example:

( gdt ) \

1 model arima

2 file arsim

3 depvar returns

4 indvar x1,x2

5 vcx 1, .4, 1

6 ar .3, .1

7 ma .1

8 open

9 /

ARIMA

The underlying model is as follows:

Φ(L)(1 − L)dyt = Xβ + Θ(L)εt

where L is the lag operator, and

Φ(L) = 1 − φ1L − φ2L2 − . . . − φpLp

Θ(L) = 1 + θ1L + θ2L2 + . . . + θqLq

and d is the level of integration.
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GARCH

The underlying model is as follows:

εt = yt − xtβ − δσt

where δ is an “in mean” coefficient

Define

εt ≡ ηtσt

where E(ηt) = 0, Var(ηt) = 1, and

σ2
t = ω + α1σ

2
t−1 . . . αpσ

2
t−p + εt + (β1 + τ1ζ(εt−1))εt−1 . . . + (βq + τqζ(εt−q))εt−q

where τt are “asymmetry” coefficients and

ζ(εt) =
{

1 : εt < 0
0 : εt >= 0

LINEAR

The underlying model is as follows:

y = xβ + ε

where y is N × L, x is N × K, β is K × L, ε is N × L

1-15
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LOGIT

Binary outcomes are generated in accordance with:

Pr(y = k|x) =
ekµ

1 + eµ

where k = 0, 1, and µ = xβ

If a random error term is selected then µ = xβ + ε

ORDLOGIT

Ordered outcomes are generated in accordance with:

Pr(y = m|x) = Λ(τm − µ) − Λ(τm−1 − µ)

where µ = xβ, and

Λ(z) =
ez

1 + ez

If a random error term is selected then µ = xβ + ε

ORDPROBIT

Ordered outcomes are generated in accordance with:

Pr(y = m|x) = Φ(τm − µ) − Φ(τm−1 − µ)
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where µ = xβ, and

Φ(z) =
1
√

2π

∫ z

∞

e−
t2
2 dt

If a random error term is selected then µ = xβ + ε

PROBIT

Binary outcomes are generated in accordance with:

Pr(y = 1|x) =
1
√

2π

∫ µ
∞

e−
t2
2 dt

where Pr(y = 0|x) = 1 − Pr(y = 1|x), and µ = xβ.

If a random error term is selected then µ = xβ + ε

1-17
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2.1 Overview

import is a multi-line GDT command that converts data files into GAUSS data sets. It
currently supports conversion from both ASCII and Excel files.

2.2 ASCII File Conversion

Import may be used to convert both delimited and packed ASCII files. To execute, enter

import ascii

as the first line of a multi-line statement. Each succeeding line should contain a
subcommand.
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2.2.1 Command Summary

The following subcommands are supported for importing ASCII files:

append Append data to an existing file.

cmdfile The name of an import command file to run.

complex Treat data as complex variables.

dateformat Specify date format. Can be overridden on per variable basis.

delimit Specify delimiter in ASCII input file.

input The name of the ASCII input file.

invar Input file variables (column names).

invarline Get input file variables from specified line in input file.

msym Specify missing value character.

nocheck Do not check data type or record length.

open Open data set after conversion.

output The name of the GAUSS data set to be created.

outtyp Output data type.

outvar List of variables to be included in output file.

skip Skip specified number of lines from beginning of input file.

typecase Change case of variable names in output file to reflect data
type.

vartype Data types of input file variables.
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vartypeline Get data types of input file variables from specified line in
input file.

The principle commands for converting an ASCII file that is delimited with spaces,
commas, or tabs are given in the following example:

( gdt ) \

1 import ASCII

2 input agex.asc

3 output agex

4 invar $ Race # Age Pay %(’MO/DD/YYYY’) Hiredate $ Sex Region

5 outvar Region Age Sex Pay

6 outtyp d

7 /

From this example, a soft delimited ASCII file agex.asc is converted to a double
precision GAUSS data set agex.dat. The input file has six variables, and thus it will be
interpreted as having six columns:

column name data type
1 Race character
2 Age numeric
3 Pay numeric
4 Hiredate date
5 Sex character
6 Region character

The output file will have 4 columns since the first and the fourth columns of the input file
(Race and Hiredate) are not included in the output variables. The columns of the output
file are:
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column name data type
1 Region character
2 Age numeric
3 Sex character
4 Pay numeric

The variable names are saved in the file header. By default, their case will be preserved.

The $ in the invar statement specifies that the variables that follow are character type.
The # specifies numeric, and the % specifies date. If a % is not followed by a date format
string, then the default will be used. The default date format string is ’YYYY-MO-DD’.
See vartype for more information on valid formats for date variables. If no variable type is
specified in an invar statement, the default is numeric.

Comments in import command files begin with // and continue to the end of the line.

2.2.2 Commands

A detailed explanation of each subcommand follows.

• append

Instructs import to append the converted ASCII data to an existing data set:

append

No assumptions are made regarding the format of the existing file. You should make
certain that the number, order and type of data converted match the existing file. import
creates v96 format data files, so it will only append to v96 format data files.

• cmdfile
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Specifies the name of an import command file, which contains the subcommands for
import. The full path name can be used in the file specification.

For example, the command:

cmdfile data.cmd

will expect an ASCII command file in the current working directory or the GDT source
path.

For Windows the command:

output \research\data\myfile.cmd

creates the file myfile.cmd on the \research\data directory, or on UNIX,

cmdfile /research/data/myfile.cmd

specifies a file to be located in the /research/data directory.

You may use cmdfile in a GDT session as follows:

( gdt ) \

1 import ASCII

2 cmdfile myfile.cmd

3 /

In this example, import will find and run the myfile.cmd file in the current working
directory. The command file should contain all of the import subcommands needed for
the translation, with a semicolon on the end of each subcommand. import command files
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support a superset of the commands available in an ATOG command file, and GDT will
execute ATOG command files unchanged with the exception that the default type for the
output data set is double precision.

For example, myfile.cmd could read as follows:

input day1.asc;

output day1;

invarline 1;

vartype # # $ # $;

skip 1;

• complex

Instructs import to convert the ASCII file into a complex GAUSS data set:

complex

Complex GAUSS data sets are stored by rows, with the real and imaginary parts
interleaved, element by element. import assumes the same structure for the ASCII input
file, and will thus read TWO numbers out for EACH variable specified.

complex cannot be used with packed ASCII files.

• dateformat

Specifies the format string to be used for inputting date data within the current import
job. dateformat may be overridden on a per variable basis by including a date format
string after the % type specifier for that variable. If no date format string is specified with
either dateformat or vartype, then the default will be used. The default date format
string is ’YYYY-MO-DD’.

This example:
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dateformat ’MO/DD/YYYY’

invar $ Name # Age % Bdate %(’HH:MI:SS’) Btime

indicates that the format string ’MO/DD/YYYY’ should be used to input the Bdate
variable, while ’HH:MI:SS’ should be used to input Btime.

A date format string must contain a single delimiter between each element and be
enclosed by single quotes. The following date elements are supported:

YYYY 4 digit year
YR Last two digits of year
MO Number of month, 1-12
DD Day of month, 1-31
HH Hour of day, 0-23
MI Minute of hour, 00-59
SS Second of minute, 00-59

If YR is specified and the two-digit year is less than or equal to 37, then 2000 will be
added to it. Otherwise, 1900 will be added.

• delimit

Specifies the delimiter in the ASCII input file. The format is as follows:

delimit (d, N)

or

delimit (d)

where d is the delimiter. The second parameter is the letter N. If present, it indicates that
import should expect to find the same number of delimiters as elements (variables *
observations) in the ASCII file. If the parameter is not present, import will expect no
delimiter after the last element in the file. See the Hard Delimited ASCII File section
under the invar command for more information.
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• input

Specifies the file name of the ASCII file to be converted. The full path name can be used
in the file specification.

For example, the command:

input data.raw

will expect an ASCII data file in the current working directory.

In Windows the command:

input \research\data\myfile.asc

specifies a file to be located in the \research\data subdirectory, whereas on UNIX

input /research/data/myfile.asc

specifies a file to be located in the /research/data directory.

• invar

Soft Delimited ASCII Files

Soft delimited files may have spaces, commas, tabs, or linefeeds as delimiters between
elements. Two or more consecutive delimiters with no data between them are treated as
one delimiter.

invar Age $ Name Sex # Pay %(’MO/DD/YYYY’) Hdate Var[1:10] X[005]
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The invar command above specifies the following variables:

column name data type
1 Age numeric
2 Name character
3 Sex character
4 Pay numeric
5 Hdate date
6 Var01 numeric
7 Var02 numeric
8 Var03 numeric
9 Var04 numeric
10 Var05 numeric
11 Var06 numeric
12 Var07 numeric
13 Var08 numeric
14 Var09 numeric
15 Var10 numeric
16 X001 numeric
17 X002 numeric
18 X003 numeric
19 X004 numeric
20 X005 numeric

As the input file is translated, the first 20 elements will be interpreted as the first row
(observation), the next 20 will be interpreted as the second row, and so on. If the number
of elements in the file is not evenly divisible by 20, the final incomplete row will be
dropped and a warning message will be given.

Hard Delimited ASCII Files

Hard delimited files have a printable character as a delimiter between elements. Two
delimiters without intervening data between them will be interpreted as a missing. If \n is
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specified as a delimiter, the file should have one element per line and blank lines will be
considered missings. Otherwise, delimiters must be printable characters. The dot ‘.’ is
illegal and will always be interpreted as a missing value. To specify the backslash as a
delimiter, use \\. If \r is specified as a delimiter, the file will be assumed to contain one
case or record per line with commas between elements and no comma at the end of the
line.

For hard delimited files the delimit subcommand is used with the invar command. The
delimit subcommand has two optional parameters. The first parameter is the delimiter;
the default is a comma. The second parameter is the letter N. If present, it indicates that
import should expect to find the same number of delimiters as elements (variables *
observations) in the ASCII file. If the parameter is not present, import will expect no
delimiter after the last element in the file.

This example:

invar delimit(, N) $ name # var[5]

will expect a file like this:

BILL , 222.3, 123.2, 456.4, 345.2, 533.2,

STEVE, 624.3, 340.3, , 624.3, 639.5,

TOM , 244.2, 834.3, 602.3, 333.4, 822.5,

This example:

invar delimit(,) $ name # var[5]

or

invar delimit $ name # var[5]
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will expect a file like this:

BILL , 222.3, 123.2, 456.4, 345.2, 533.2,

STEVE, 624.3, 340.3, , 624.3, 639.5,

TOM , 244.2, 834.3, 602.3, 333.4, 822.5

The difference between specifying N or N-1 delimiters can be seen here:

456.4, 345.2, 533.2,

, 624.3, 639.5,

602.3, 333.4,

If the invar statement had specified 3 variables and N-1 delimiters, this file would be
interpreted as having three rows containing a missing in the 2,1 element and the 3,3
element like this:

456.4 345.2 533.2
. 624.3 639.5
602.3 333.4 .

If N delimiters had been specified, this file would be interpreted as having two rows, and a
final incomplete row that is dropped:

456.4 345.2 533.2
. 624.3 639.5

The spaces were shown only for clarity and are not significant in delimited files so:

BILL,222.3,123.2,456.4,345.2,533.2,

STEVE,624.3,340.3,,624.3,639.5,

TOM,244.2,834.3,602.3,333.4,822.5
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would work just as well. Linefeeds are significant only if \n is specified as the delimiter,
or when using \r.

This example:

invar delimit(\r) $ name # var[5]

will expect a file with no comma after the final element in each row:

BILL , 222.3, 123.2, 456.4, 345.2, 533.2

STEVE, 624.3, 340.3, 245.3, 624.3, 639.5

TOM , 244.2, 834.3, 602.3, 333.4, 822.5

Packed ASCII Files

Packed ASCII files must have fixed length records. The record subcommand is used to
specify the record length and variables are specified by giving their type, starting position,
length, and the position of an implicit decimal point if necessary.

Note that outvar is not used with packed ASCII files. Instead, invar is used to specify
only those variables to be included in the output file.

For packed ASCII files the syntax of the invar command is as follows:

invar record=reclen (format) variables (format) variables

where,

reclen the total record length in bytes, including the final carriage
return/linefeed if applicable. Records must be fixed length.

format (start,length.prec) where:

2-12



Im
port

Import

start starting position of the field in the record, 1 is the first
position. The default is 1.

length length of the field in bytes.

prec optional; a decimal point will be inserted automatically
prec places in from the RIGHT edge of the field.

If several variables are listed after a format definition, each succeeding field will be
assumed to start immediately after the preceding field. If an asterisk is used to specify the
starting position, the byte following the last field will be assumed. An asterisk in the
length position will leave both length and prec unchanged from the previous settings. This
is illegal: (3,8.*).

The type change characters $, # and % are used to specify character, numeric, and date
types respectively. If % is indicated, it should be followed by a date format string and then
the variable format. See dateformat for valid date formats. Since fields in packed ASCII
files must have a fixed length, date data must contain two digit months, days and hours or
be padded with spaces to the correct field length.

Any data in the record that is not defined in a format is ignored.

The examples below assume a 42-byte record with a carriage return/linefeed occupying
the last 2 bytes of each record. The data below can be interpreted in different ways using
different invar statements:

ABCDEFGHIJ01-23-200312345678901234567890<CR><LF>

| | | | | | |

position 1 10 20 30 40 41 42

This example:

invar record=42 $(1,3) group %(’MO-DD-YYYY’,11,10) deadline #(*,4.2) x[3]
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will result in:

variable value type
group ABC character
deadline 01-23-2003 date
x1 12.34 numeric
x2 56.78 numeric
x3 90.12 numeric

In the GAUSS data set, date columns are stored in DT Scalar format. In the above
example, the value of deadline will be a double containing 20030123000000. See Date
And Time Formats in the Language Fundamentals chapter of the User Guide for details
on the DT Scalar format.

This example:

invar record=42 $(1,8) dept (*,2) id # (21,5) wage (*,2) area

will result in:

variable value type
dept ABCDEFGH character
id IJ character
wage 12345 numeric
area 67 numeric

• invarline

Gets input file variable names from a specified line in the input file.

For example:
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invarline 1

will get the variable names from the first line of the input file. invarline may be used
only with delimited ASCII files. In a soft delimited ASCII file, the variable names may be
delimited with spaces, commas, or tabs. In a hard delimited ASCII file, the variable names
must use the same delimiter as the data. To use invarline with a hard delimited ASCII
file, call delimit to specify the delimiter.

invarline should be used in conjunction with skip so that import will not attempt to
retrieve data from the line in the input file which contains the variable names.

• msym

Specifies the character or string in the input file that is to be interpreted as a missing value.

This example:

msym &

defines the character & as the missing value character.

This example:

msym NA

specifies that each instance of ‘NA’ in the input file is to be interpreted as a missing value.

The default ‘.’ (dot) will always be interpreted as a missing value unless it is part of a
numeric value.

• nocheck
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Optional, suppresses automatic checking of packed ASCII record length and output data
type. The default is to increase the record length by 2 bytes if the second record in a
packed file starts with a linefeed, and any files that have explicitly defined character data
will be output in double precision regardless of the type specified.

• open

After the conversion, the GAUSS data set is opened for use in GDT:

open

• output

The name of the GAUSS data set. A file will be created with the extension .dat.

For example, on Windows

output \research\data\myfile

creates the file myfile.dat on the \research\data directory, or on UNIX,

output /research/data/myfile

creates the file myfile.dat on the /research/data directory.

The command:

output myfile

creates the file in the current working directory.
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• outtyp

Selects the numerical accuracy of the output file. Use of this command should be dictated
by the accuracy of the input data and storage space limitations.

For example:

outtyp D

will write a double precision output file.

outtyp may be set to any of the following:

D double precision (default)
F single precision
I integer

The ranges of the different formats are:

bytes data type significant range
digits

2 integer 4 −32768 ≤ X ≤ 32767
4 single precision 6–7 8.43x10−37 ≤ |X| ≤ 3.37x10+38

8 double precision 15–16 4.19x10−307 ≤ |X| ≤ 1.67x10+308

If the output type is integer, the input numbers will be truncated to integers. If your data
has more than 6 or 7 significant digits, you should specify outtyp as double.

Character and date data require outtyp d. import automatically selects double precision
when character or date data are specified unless you have also specified nocheck.
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The precision of the storage selected does not affect the accuracy of GAUSS calculations
using the data. GAUSS converts all data to double precision when the file is read.

• outvar

Selects the variables to be placed in the GAUSS data set. The outvar command needs
only the list of variables to be included in the output data set. They can be in any order. If
outvar is not used, all of the input variables are written to the output file.

For example:

invar $name #age pay $sex %(’YYYY/MO/DD’) hiredate #var[1:10] x[005]

outvar sex age hiredate x001 x003 var[1:8]

column name data type
1 sex character
2 age numeric
3 hiredate date
4 x001 numeric
5 x003 numeric
6 var01 numeric
7 var02 numeric
8 var03 numeric
9 var04 numeric

10 var05 numeric
11 var06 numeric
12 var07 numeric
13 var08 numeric

outvar is not used with packed ASCII files.

• skip

Skips down a specified number of lines from the beginning of the input file before
retrieving data.
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For example:

skip 5

will skip the first five lines in the input file and begin retrieving data from the sixth line.
This command may be used to skip any explanatory notes that are included at the
beginning of the ASCII file or to skip lines containing variable names and types. See
documentation on the invarline and vartypeline subcommands for further
information on getting variable names and types out of an ASCII file.

• typecase

typecase should be used only to create backward compatible data sets which may be
used in old programs and applications.

Forces the names of character variables to lower case and the names of numeric variables
to uppercase. If typecase is specified, the date variable type is not supported. If
typecase is not specified, the case of each variable name will be preserved.

• vartype

Specifies the types of the input variables.

For example:

vartype $ # # %(’MO/DD/YYYY HH:MI’) $

will specify the types of the input variables as follows:

column type
1 character
2 numeric
3 numeric
4 date
5 character
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If a date variable is specified in a vartype statement, then it should be followed by a date
format string unless the default is to be used. The default date format string is
’YYYY-MO-DD’. To reset the default date format string for the current import job, use
the dateformat subcommand. A date format string must contain a single delimiter
between each element and be enclosed by single quotes. The following date elements are
supported:

YYYY 4 digit year
YR Last two digits of year
MO Number of month, 1-12
DD Day of month, 1-31
HH Hour of day, 0-23
MI Minute of hour, 00-59
SS Second of minute, 00-59

If YR is specified and the two-digit year is less than or equal to 37, then 2000 will be
added to it. Otherwise, 1900 will be added.

It is possible to set both variable names and variable types using invar. However, if the
variable names are retrieved from the ASCII file with invarline, you need to set the
variable types using either vartype or vartypeline. Use vartype to set the variable
types within your import multi-line statement, or vartypeline to retrieve the variable
types from a specified line in the ASCII file.

The number of variable names must match the number of variable types.

• vartypeline

Retrieves the types of the input variables from a specified line in the input file.

For example:

vartypeline 2

will retrieve the types of the input variables from the second line of the input ASCII file.
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In this case, line 2 of the ASCII file should contain a delimited series of type specifiers: #
to indicate numeric data, $ to indicate character data, and % for date data. A % should be
followed by a date format string unless the default is to be used. The default date format
string is ’YYYY-MO-DD’. To reset the default date format string for the current import
job, use the dateformat subcommand. A date format string must contain a single
delimiter between each element. See dateformat for valid date formats.

vartypeline may be used only with delimited ASCII files. In a soft delimited ASCII
file, the variable types may be delimited with spaces, commas, or tabs. In a hard delimited
ASCII file, the variable types must use the same delimiter as the data.

vartypeline should be used in conjunction with skip so that import will not attempt to
retrieve data from the line in the input file which contains the variable types.

It is possible to set both variable names and variable types using invar. However, if the
variable names are retrieved from the ASCII file with invarline, you need to set the
variable types using either vartype or vartypeline. Use vartype to set the variable
types within your import multi-line statement, or vartypeline to retrieve the variable
types from a specified line in the ASCII file. The number of variable types found must
match the number of variable names indicated by the invar or invarline command.

2.2.3 Examples

The first example is a soft delimited ASCII file called agex1.asc. The file contains seven
columns of ASCII data.

Jan 167.3 822.4 6.34E06 yes 84.3 100.4

Feb 165.8 987.3 5.63E06 no 22.4 65.6

Mar 165.3 842.3 7.34E06 yes 65.4 78.3

The import multi-line command is as follows:

( gdt ) \
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1 import ASCII

2 input /gauss/agex1.asc

3 output agex1

4 invar $month #temp pres vol $true #var[02]

5 outvar month true temp pres vol

6 /

The output data set will contain the following information:

name month true temp pres vol
type char char numeric numeric numeric
case 1 Jan yes 167.3 822.4 6.34e+6
case 2 Feb no 165.8 987.3 5.63e+6
case 3 Mar yes 165.3 842.3 7.34e+6

The data set defaults to double precision since no outtyp command is specified.

The second example is a packed ASCII file xlod.asc which contains 32-character
records.

AEGDRFCSTy02345678960631567890<CR><LF>

EDJTAJPSTn12395863998064839561<CR><LF>

GWDNADMSTy19827845659725234451<CR><LF>

| | | | | |

position 1 10 20 30 31 32

The import multi-line command is as follows:

( gdt ) \

1 import ASCII

2 input /gauss/dat/xlod.asc

3 output xlod1

4 invar record=32 $(1,3) client[2] zone (*,1) reg #(20,5) zip

5 /
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The output data set will contain the following information:

name client1 client2 zone reg zip
type char char char char numeric
case 1 AEG DRF CST y 60631
case 2 EDJ TAJ PST n 98064
case 3 GWD NAD MST y 59725

The data set is double precision.

The third example is a hard delimited ASCII file called cplx.asc. The file contains six
columns of ASCII data:

cvar1, cvar2, cvar3,

456.4, 345.2, 533.2, -345.5, 524.5, 935.3,

-257.6, 624.3, 639.5, 826.5, 331.4, 376.4,

602.3, -333.4, 342.1, 816.7, -452.6, -690.8

The import multi-line command is as follows:

( gdt ) \

1 import ASCII

2 input /gauss/cplx.asc

3 output cplx

4 invarline 1

5 skip 1

6 vartype # # #

7 delimit

8 complex

9 /

The output data set will contain the following information:
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name cvar1 cvar2 cvar3
type numeric numeric numeric

case 1 456.4 + 345.2i 533.2 - 345.5i 524.5 + 935.3i

case 2 -257.6 + 624.3i 639.5 + 826.5i 331.4 + 376.4i

case 3 602.3 - 333.4i 342.1 + 816.7i -452.6 - 690.8i

The data set is double precision.

2.3 Excel File Conversion

Import may also be used to convert Excel files into GAUSS data sets. To execute, enter

import excel

as the first line of a multi-line statement. Each succeeding line should contain a
subcommand.

2.3.1 Command Summary

The following subcommands are supported for importing Excel files:

append Append Excel data to existing GAUSS data set.

datarange Range of data in the input file, default = a1.

datasheet Sheet in the input file containing the data.

input The name of the Excel input file.

namerange Range of input variable names, if any, in the input file.
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names List of input variable names.

namesheet Sheet in the input file containing input variable names.

open Open data set after conversion.

output The name of the GAUSS data set to be created.

overwrite Overwrite the output GAUSS data set.

translate Translate Excel special characters to specified values in
GAUSS data set.

2.3.2 Example

This example imports a row vector of names starting in cell “a1” in the Excel file, and a
matrix of data with upper left starting element in cell “a3”. The names and matrix of data
are entered into a GAUSS data set with file name test1.dat.

( gdt ) \

1 import excel

2 input test1.xls

3 namerange a1

4 datarange a3

5 output test1

6 /

In the following example, the variable names are stored in a column vector starting in cell
“a1” and ending in cell “a6”. The data are stored by columns in a block with cell “c1” as
the upper left corner and cell “h20” as the lower right corner.

( gdt ) \

1 import excel

2 input test2.xls
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3 namerange a1:a6

4 datarange c1:h20

5 output test2

6 /

In this example, either the variable names do not exist in the Excel file, or the user chooses
not to use them. Default names X1, X2, . . . are given in the resulting GAUSS data set.

( gdt ) \

1 import excel

2 input test3.xls

3 datarange a3

4 output test3

5 /

Excel Dates

Data that are typed as dates in the Excel file will be transformed to dates in DT format in
the GAUSS data set.

Special Characters

Special characters in the Excel file can be transformed to specified numerical values in the
GAUSS data set. The special characters are

empty

#N/A

#VALUE!

#DIV/0!
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#NAME?

#REF!

#NUM!

#NULL!

#ERR

By default they are all converted to GAUSS missing values. If a numeric value is wanted,
use the translate command, specifying both the special character and the numeric
value. For example:

translate #N/A = 999

translates all instances of #N/A to 999 in the GAUSS data set.

2.3.3 Commands

A detailed explanation of each subcommand follows.

• append

Instructs import to append the Excel data to an existing data file:

append

No assumptions are made regarding the format of the existing file. You should make
certain that the number, order and type of data converted match the existing file. import
creates v96 format data files, so it will only append to v96 format data files.
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• datarange

Specifies the cell range of the data in the Excel file:

datarange a1:c100

If the data is in consecutive cells in columns, only the upper left cell needs to be specified:

datarange a1

• datasheet

Specifies the sheet of the data in the Excel file:

datasheet 2

The default is 1.

• input

Specifies the file name of the Excel file to be converted. The full path name can be used in
the file specification.

For example, the command:

input data.raw

will expect an Excel data file in the current working directory.

The command:
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input \research\data\myfile.asc

specifies a file to be located in the \research\data subdirectory.

• namerange

Specifies the cell range of the names of the columns of the data in the Excel file, if any:

When the namerange option is specified as a single cell, the names are assumed to be
distributed in a row with names in consecutive cells. Suppose there are 6 columns of data
and thus 6 names in the Excel file. Then the option

namerange a1

is equivalent to

namerange a1:f1

If the names are listed in a column rather than a row, then the entire range must be
specified. For example:

namerange a1:a6

If names do not exist in the Excel file nor are specified by the names command, default
names are given: X1, X2, . . . , Xk.

• names

If the Excel file does not contain the names of the columns of the data, they can be
specified with this command:
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names age,sex,pay

If names are neither specified with this command nor exist in the Excel file, default names
are given: X1, X2, . . . , Xk.

• namesheet

Specifies the sheet of the variable names in the Excel file:

namesheet 2

The default is 1.

• open

Opens the GAUSS dataset in GDT after creation:

open

• output

The name of the GAUSS data set. A file will be created with the extension .dat.

For example:

output \research\data\myfile

creates the file myfile.dat on the \research\data directory.

The command:
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output myfile

creates the file in the current working directory.

• overwrite

This command is used to specify that the output GAUSS data set will replace a current
GAUSS data set with the same name if it exists:

overwrite

• translate

This command specifies that certain special characters in the Excel file are translated to
given values in the GAUSS data set. By default these special characters are translated to
GAUSS missing values.

The following are the special characters:

empty

#N/A

#VALUE!

#DIV/0!

#NAME?

#REF!

#NUM!

#NULL!
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#ERR

For example, to translate all instances of #ERR to 999, enter

translate #ERR = 999

A separate translate command is required for each translation. All special characters
not associated with a translate command are translated to GAUSS missing values.
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3.1 Overview

export is a multi-line GDT command that converts GAUSS data sets into data files of
other types. It currently supports conversion to both ASCII and Excel files.

3.2 ASCII File Conversion

Export may be used to convert an active GAUSS data set into a delimited ASCII file. To
execute, enter

export ASCII

as the first line of a multi-line statement. Each succeeding line should contain a
subcommand.
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3.2.1 Command Summary

The following subcommands are supported for exporting ASCII files:

append Append to already existing output file.

dateformat Specify format for date data.

drop Write all variables except those specified.

finaldelim Specify delimiter to be written at the end of the file.

keep Write only specified variables.

noquote Do not quote character and date data.

obsdelim Specify delimiter to be written between observations.

output The name of the ASCII data file to write.

overwrite Overwrite output file if it already exists.

vardelim Specify delimiter to be written between variables.

writevarnames Write variable names to output file.

writevartypes Write variable types to output file.

3.2.2 Commands

A detailed explanation of each subcommand follows.

• append

Instructs export to append the converted data to an existing ASCII file:
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append

No assumptions are made regarding the format of the existing file. You should make
certain that the number, order and type of data converted match the existing file.

• dateformat

Specifies the format in which date data should be written to the output file. The format is
as follows:

dateformat default date format date format var name...

Each var name that is directly specified will be written in the ASCII file according to the
date format immediately preceding. Any date variables in the data set that are not directly
specified will be written according to the default date format.

For example, when exporting a data set containing the following variables:

column name data type
1 Pname character
2 Edate date
3 Start date
4 End date
5 Elapsed date

the command:

dateformat ’HH:MI’ ’MO/DD/YYYY’ Edate

specifies that Edate is to be written using the format ’MO/DD/YYYY’, and Start, End,
and Elapsed using the format ’HH:MI’.

3-3



GAUSS Data Tool

A date format string must contain a single delimiter between each element and must be
enclosed by single quotes. The following date elements are supported:

YYYY 4 digit year
YR Last two digits of year
MO Number of month, 1-12
DD Day of month, 1-31
HH Hour of day, 0-23
MI Minute of hour, 00-59
SS Second of minute, 00-59

If no date format is specified with the dateformat command, any date data encountered
in the data set will be written according to the default for importing and exporting date
data. The default date format is ’YYYY-MO-DD’.

• drop

Specifies variables that are NOT to be written to the output file. For example, when
converting a data set containing three variables, x1, x2 and x3, to an ASCII file, the
command:

drop x1,x2

specifies that only variable x3 be written to the output file.

• finaldelim

Specifies the delimiter to be written after the final observation in the output ASCII file.

For example:

finaldelim ’|’

specifies that the final observation in the output file be followed by a vertical bar.
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• keep

Specifies variables to be written to the output file. For example, when converting a data set
containing three variables, x1, x2 and x3, to an ASCII file, the command:

keep x2,x3

specifies that only variables x2 and x3 be written to the ASCII file.

• noquote

Instructs export to write character and date data to the output ASCII file without quotes:

noquote

By default, character and date data are enclosed by double quotes in the output file.

• obsdelim

Specifies the delimiter to be written between each observation in the output ASCII file.

To specify the delimiter to be written after the final observation in the ASCII file, use
finaldelim.

For example:

obsdelim ’,’

specifies that each observation in the output file except the last be followed by a comma.

• output
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The name of the output ASCII file.

For example, on Windows

output \research\data\myfile.asc

creates the file myfile.asc on the \research\data directory, or on UNIX,

output /research/data/myfile.asc

creates the file myfile.asc on the /research/data directory.

The command:

output myfile.asc

creates the file in the current working directory.

• overwrite

Overwrites the output ASCII file if it already exists:

overwrite

By default, export will error out if the specified output file exists.

• vardelim

Specifies the delimiter to be written between each variable within an observation in the
output ASCII file.
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To specify the delimiter to be written between observations, use obsdelim.

For example:

vardelim ’, ’

specifies that a comma and a space be written between each variable within an observation
in the output file.

• writevarnames

Writes the names of the variables in the output file before the data:

writevarnames

The variable names will be enclosed by double quotes unless noquote is specified, and
they will be delimited in the same way as the data that follows.

• writevartypes

Writes the types of the variables in the output file before the data:

writevartypes

The variable types will be enclosed by double quotes unless noquote is specified, and
they will be delimited in the same way as the data that follows. A date type specifier, %,
will be followed by the corresponding date format string.

3.2.3 Examples

The first example is a GAUSS data set called einfo.dat, which has five variables and
contains the following data:
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varname Ename bdate age pay hiredate
type char date numeric numeric date
case 1 Sue 19710421000000 33 60000 20010115000000
case 2 Tom 19570905000000 47 90000 19981015000000
case 3 James 19641230000000 40 65000 19950401000000
case 4 John 19740528000000 30 58000 19970701000000

The following export multi-line command:

( gdt . einfo ) \

1 export ASCII

2 output /gauss/einfo.asc

3 writevarnames

4 writevartypes

5 dateformat ’MO/DD/YR’

6 vardelim ’, ’

7 obsdelim ,

8 /

will produce the output ASCII file einfo.asc on the gauss directory, which will contain:

"Ename", "bdate", "age", "pay", "hiredate",

"$", "%(’MO/DD/YR’)", "#", "#", "%(’MO/DD/YR’)",

"Sue", "04/21/71", 33, 60000, "01/15/01",

"Tom", "09/05/57", 47, 90000, "10/15/98",

"James", "12/30/64", 40, 65000, "04/01/95",

"John", "05/28/74", 30, 58000, "07/01/97"

The second example converts a GAUSS data set called test1.dat, which has four
variables and contains the following data:
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varname Month X1 X2 X3
type char numeric numeric numeric
case 1 JAN 162384 105.32 1546
case 2 FEB 123643 462.15 3628
case 3 MAR 102738 362.9 9361

The following export multi-line command:

( gdt . test1 ) \

1 export ASCII

2 output /gauss/mdata.asc

3 writevarnames

4 writevartypes

5 drop x2

6 noquote

7 vardelim |

8 /

will produce the output ASCII file mdata.asc on the gauss directory, which will contain:

Month|X1|X3

$|#|#

JAN|162384|1546

FEB|123643|3628

MAR|102738|9361

3.3 Excel File Conversion

Export may be used to convert GAUSS data sets into Excel files. To execute, enter

export excel
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as the first line of a multi-line statement. Each succeeding line should contain a
subcommand.

3.3.1 Command Summary

The following subcommands are supported for exporting Excel files:

datarange Range of data in the output file, default = a1.

datasheet Sheet in the output file for the data.

deletefile Delete existing output file.

drop Write all variables except those specified.

keep Write only specified variables.

namerange Range of names, if to be written to Excel file.

namesheet Sheet in the output file of names.

output The name of the output Excel file.

translate Translate specified GAUSS numbers into Excel special
characters.

update Update existing output file.

Names

If namerange is not set, names will not be written to the Excel file. If namerange is set to
a single cell, names will be written row-wise. To write names to a column, beginning and
ending cells must be specified, e.g., “A1:A5”.
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Special Characters

Specified numbers in the GAUSS data set can be written as special characters in the Excel
data set. The special characters are

empty

#N/A

#VALUE!

#DIV/0!

#NAME?

#REF!

#NUM!

#NULL!

#ERR

By default, GAUSS missing values will be written as empty cells.

3.3.2 Example

This example exports the data in a GAUSS data set called test.dat into the first sheet of
an Excel file where the upper left element of the data goes into cell “a3” and the names are
entered row-wise starting in cell “a1”.

( gdt . test ) \

1 export excel

2 output test.xls
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3 namerange a1

4 datarange a3

5 /

In the following example, the names are left out of the Excel file, and GAUSS missing
values in the data are translated to a special Excel character:

( gdt . test ) \

1 export excel

2 output test.xls

3 datarange a3

4 translate . = #N/A

5 /

3.3.3 Commands

A detailed explanation of each subcommand follows.

• datarange

Specifies the range for the data in the output Excel file. Only the upper left cell is required:

datarange c4

The default is cell a1;

• datasheet

Specifies the sheet of the data in the Excel file:

datasheet 2
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The default is 1.

• deletefile

Deletes the output Excel file if it already exists before exporting:

deletefile

By default, export will error out if the specified output file exists.

• drop

Specifies columns in the GAUSS data set to be excluded from the output Excel file. For
example,

drop age, pay

• keep

Specifies columns in the GAUSS data set to be included in the output Excel file.

For example,

keep age, pay

If neither keep nor drop commands are entered, all columns are included in the Excel file.

• namerange

Specifies the cell range in the Excel file for the names. If there is not a namerange
command, the names will not be entered into the Excel file.

If a single cell is specified, the names are entered in consecutive cells row-wise. Thus
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namerange a1

for 3 names is equivalent to

namerange a1:c1

To enter the names in a column, the entire range must be specified:

namerange a1:a3

• namesheet

Specifies the sheet of the variable names in the Excel file:

namesheet 2

The default is 1.

• output

The name of the output Excel file. A file will be created with the extension .xls.

For example

output \research\data\myfile

creates the file myfile.xls on the \research\data directory.

The command:
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output myfile

creates the file in the current working directory.

• translate

This command is used to translate specified values in the GAUSS data set into special
characters in the Excel file. By default GAUSS missing values are translated into empty
cells in the Excel file.

The following are the special characters:

empty

#N/A

#VALUE!

#DIV/0!

#NAME?

#REF!

#NUM!

#NULL!

#ERR

For example, to translate all instances of 999 in the GAUSS data set into the special
character #ERR, enter

translate 999 = #ERR
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A separate translate command is required for each translation.

• update

Instructs export to update an existing Excel file with the specified data translation:

update

This subcommand allows you to overwrite a part of an existing Excel file or append to an
Excel file. No assumptions are made regarding the format of the existing file.
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add

PURPOSE Creates a new data set variable.

FORMAT add [[vtype]] newvar = expression

add [[vtype]] newvar1, newvar2, . . .

Valid vtypes are:

# numeric (default)

$ character

% date
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OUTPUT A nobs × 1 variable is added to the active data set, where nobs is the
number of observations in the data set.

REMARKS This is a transformation expression and all operators are dot (element by
element) operators unless this feature has been turned off using allops.

If no expression is present, a vector of zeros is added to the data set,
which corresponds to a NULL string for character variables and a
zeroed out DT for date variables.

If an expression is given, it must produce a vector of length equal to the
number of observations in the active data set.

CODE add # agecat = age >= 21 and age < 65

add $ sex = "Male" * (nsex == 1) + "Female" * (nsex == 2)

The example above creates agecat with a value of 1 where age >= 21
and age < 65, otherwise, agecat is created with a value of 0. Then the
character variable sex is created with a value of “Male” where nsex is 1
or a value of “Female” where nsex is 2.

EXAMPLE ( gdt ) open linear

( gdt linear ) lv

> linear 3 vars, 100 obs, /data/linear.dat

Y numeric

X1 numeric

X2 numeric

( gdt linear ) add ex2 = exp(x2)

( gdt * linear ) lv

> * linear 4 vars, 100 obs, /data/linear.dat

Y numeric

X1 numeric

X2 numeric

* ex2 numeric

SEE ALSO create
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allops

PURPOSE Turns off interpretation of scalar-returning operators as element by
element operators.

FORMAT allops

REMARKS Non-dot operators in a transformation expression will be interpreted as
scalar-returning operators and dot operators will be interpreted as
element by element operators.

Code inside of procedures is not affected by this setting.

For more information, refer to Scalar and Element by Element
Operations (Section 1.4) and Element by Element Operators in the
GAUSS Users Guide.

CODE allops

EXAMPLE ( gdt . ) open tobit

( gdt . tobit ) lv

> tobit 4 vars, 100 obs, /data/example/tobit.dat

Y numeric

CNST numeric

X1 numeric

X2 numeric

( gdt . tobit ) allops

All operators behave normally in transformations

( gdt # tobit ) add y2 = y < 20

Expression returns wrong size value

Returns 1x1

Should be 100x1

In this example, y2 will be a scalar because allops is in effect. An
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error message is issued because y2 does not have the correct number of
rows (observations).

SEE ALSO dotops

cat

PURPOSE Combines all variables in a data set into a matrix.

FORMAT cat matrix name [[name vector]]

OUTPUT N × K matrix with columns corresponding to variables.

REMARKS Creates a matrix in the data set workspace containing all the variables
in the data set in the same order as the lv command variable list.

If name vector is specified, a K × 1 string array is created containing
the names of the variables.

Use this command to combine the individual vectors into a single
matrix to facilitate operations that can be done more easily with matrix
operations.

Use split to move the data from the matrix back into the individual
vectors.

CODE cat max0 vname

EXAMPLE This example standardizes the variables in a data set.

( gdt maxfact ) cat max0
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( gdt maxfact ) g max0 = (max0 - meanc(max0)’) ./ stdc(max0)’

Using maxfact workspace

( gdt maxfact ) stats

> maxfact 4 vars, 100 obs /data/maxfact.dat

Variable Mean Std Dev Variance Minimum Maximum Valid Missing

---------------------------------------------------------------------

Y1 0.0275 1.0706 1.1461 -3.1796 2.8096 100 0

Y2 0.0041 0.8206 0.6734 -1.4813 2.7042 100 0

Y3 0.1155 0.9598 0.9212 -1.9176 3.8984 100 0

Y4 0.1058 0.8382 0.7025 -2.1307 2.1470 100 0

( gdt maxfact ) split max0

( gdt * maxfact ) stats

> * maxfact 4 vars, 100 obs /data/maxfact.dat

Variable Mean Std Dev Variance Minimum Maximum Valid Missing

---------------------------------------------------------------------

* Y1 0.0000 1.0000 1.0000 -2.9958 2.5987 100 0

* Y2 -0.0000 1.0000 1.0000 -1.8101 3.2904 100 0

* Y3 -0.0000 1.0000 1.0000 -2.1182 3.9413 100 0

* Y4 -0.0000 1.0000 1.0000 -2.6682 2.4353 100 0

( gdt * maxfact )

The data set does not change until the split command is executed, as
can be seen by the output of the two stat commands in the above
example.

SEE ALSO split

cd

PURPOSE Changes the working directory.

FORMAT cd file path
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REMARKS The directory is changed to the directory specified.

CODE cd /file/path

cleanup

PURPOSE Removes from a workspace all symbols that are not data set variables.

FORMAT cleanup

REMARKS When GDT opens a data set, the data are loaded into a workspace as
individual vectors. As certain commands are executed, extraneous
symbols, such as data, procedures, and new variables, are left in the
workspace. These extraneous symbols can be removed with the
cleanup command, which deletes all symbols except variables that are
part of the opened data set, or created with the add or code statements.

CODE cleanup

close

PURPOSE Closes an open data set.

FORMAT close [[handle, handle, . . .]]

REMARKS If a handle is not specified, the active data set is closed.
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If there are uncommitted changes, the user will be prompted to save or
discard the changes or cancel the close.

CODE close

EXAMPLE ( gdt freqdata ) close

( gdt )

SEE ALSO open, use, nouse

code

PURPOSE Creates a new variable with discrete values.

FORMAT code [[vtype]] newvarname with

value1 for expression1,

value2 for expression2,
...

valueN for expressionN

[[ default default value expression ]]

Valid vtypes are:

# numeric (default)

$ character

% date
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REMARKS value in the for clause and default must be a scalar value or a
scalar-returning expression.

The expression in the for clause must return a true or false (non-zero or
0) result. If the expression returns true (non-zero), the new variable is
assigned the value in that for clause, otherwise, the new variable will
be assigned the default value if specified or a value of 0.

The code statement syntax requires multiple-line entries. The
procedure for entering and working in multi-line mode is described in
User Interfaces (Section 1.3).

Commas are required between each for expression; no comma is
allowed after the last for expression.

CODE code # agecat with

1 for age < 21,

2 for age >= 21 and age < 30,

3 for age >= 31 and age < 40,

4 for age >= 41 and age < 50

default 5

EXAMPLE ( gdt garch ) report freq

CASES PROCESSED BY THIS PROCEDURE:

100 cases were kept out of 100.

0 deleted because of missing values.

Y 2.42655 |*

|****

Valid 100.0000 |******

Missing 0.0000 |******************

Mean 0.9821 |*****************

Std Dev 0.6008 |*******

Variance 0.3610 |****

Mode -1.0168 |*

Minimum -1.0168 |*

Maximum 2.4265 -1.01679 |**
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----------------------------------------------------------

Total N 100

----------------------------------------------------------

( gdt garch ) \

> code newy with

> 1 for y < -.5,

> 2 for y >= -.5 and y < .5,

> 3 for y >= .5

> /

( gdt * garch ) \

> report freq

> use newy

> /

CASES PROCESSED BY THIS PROCEDURE:

100 cases were kept out of 100.

0 deleted because of missing values.

newy 3.00000 |******************

|

Valid 100.0000 |

Missing 0.0000 |

Mean 2.8200 |***

Std Dev 0.4579 |

Variance 0.2097 |

Mode 3.0000 |

Minimum 1.0000 |

Maximum 3.0000 1.00000 |*

Percents Percents

Value Count Cell Cum Value Count Cell Cum

------------------------------------------------------------

1 3 3.00 3.00 3 85 85.00 100.00

2 12 12.00 15.00

------------------------------------------------------------

Total N 100

------------------------------------------------------------
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( gdt * garch )

SEE ALSO recode

commit

PURPOSE Saves current or specified data set changes to the disk.

FORMAT commit [[handle]]

REMARKS If handle is not specified, the active data set is committed.

Executing a commit makes modifications to the data set permanent.

CODE commit simdata

EXAMPLE ( gdt ) open maxfact

( gdt maxfact ) add y5 = y1 + y2

( gdt * maxfact ) commit

5 variables and 100 observations written to /data/maxfact.dat

( gdt maxfact )

SEE ALSO rollback

copy

PURPOSE Copies variables to or from the active data set.

FORMAT copy [[var1, var2, . . .]] from handle

4-10 GDT S R



S
tatem

ent
R

eference
create

copy [[var1, var2, . . .]] to handle

REMARKS If no variables are specified, all variables in the source are copied.

CODE copy age from freqdata

copy X1 to simdata

EXAMPLE ( gdt . ) open examples/maxsimeq

( gdt . maxsimeq ) open examples/tobit

( gdt . tobit ) copy y2 from maxsimeq

1 variables copied

( gdt . * tobit ) lv

> * tobit 5 vars, 100 obs, /gauss/examples/tobit.dat

Y numeric

CNST numeric

X1 numeric

X2 numeric

* Y2 numeric

( gdt . * tobit ) copy cnst to maxsimeq

1 variables copied

( gdt . * tobit ) use maxsimeq

( gdt . * maxsimeq ) lv

> * maxsimeq 5 vars, 100 obs, /gauss/examples/maxsimeq.dat

Y1 numeric

Y2 numeric

X1 numeric

X2 numeric

* CNST numeric

( gdt . * maxsimeq )

create

PURPOSE Creates an empty data set.
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FORMAT create data set name

OUTPUT A data set with no variables is added to the GAUSS session.

REMARKS If no arguments are included, all open data sets are listed.

Use the add or code statements to create variables in the data set.

The data set is written to disk only when the commit statement is
executed; the data set is written as a .dat file.

The first variable added to the new data set establishes the number of
observations and subsequently added variables must have the same
number of observations.

CODE create newdat

EXAMPLE ( gdt . ) create newdat

( gdt . ) add y = rndn(100,1)

( gdt . * newdat ) lv

> * newdat 1 vars, 100 obs, newdat.dat

* y numeric

( gdt . * newdat ) report freq

CASES PROCESSED BY THIS PROCEDURE:

100 cases were kept out of 100.

0 deleted because of missing values.

y 3.06419 |**

|*

Valid 100.0000 |****

Missing 0.0000 |********

Mean -0.0683 |*************

Std Dev 1.1759 |******************

Variance 1.3826 |********
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Mode -3.2408 |**

Minimum -3.2408 |***

Maximum 3.0642 -3.24079 |*

--------------------------------------------------------------------

Total N 100

--------------------------------------------------------------------

( gdt . * newdat ) commit

( gdt . newdat )

SEE ALSO add

delete

PURPOSE Deletes observations based on an expression.

FORMAT delete where expression

CODE delete where age < 21

EXAMPLE ( gdt maxfact ) delete where y5 < -3.9

Deleted 1 rows from maxfact, 99 are left

( gdt * maxfact )

dotops

PURPOSE Turns on interpretation of scalar-returning operators as element by
element operators.

GDT S R 4-13



drop

FORMAT dotops

REMARKS Non-dot (scalar-returning) operators in a transformation expression will
be interpreted as dot operators (element by element).

Code inside of procedures is not affected by this setting.

For more information, refer to Scalar and Element by Element
Operations (Section 1.4) and Element by Element Operators in the
GAUSS Users Guide.

CODE dotops

EXAMPLE ( gdt # tobit ) dotops

Operators are dot operators in transformations

( gdt . tobit ) add y2 = y < 20

( gdt . * tobit ) add y3 = y .< 20

( gdt . * tobit )

In the example above, y2 and y3 will be identical.

SEE ALSO allops

drop

PURPOSE Drops variables from a data set.

FORMAT drop var1[[, var2, . . .]]

CODE drop x1,x2

EXAMPLE ( gdt maxfact ) drop y5, y6
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2 variables dropped

( gdt * maxfact )

SEE ALSO keep

export

PURPOSE Translates a GAUSS data set to a data file of a different format.

FORMAT export export type

REMARKS The export statement syntax requires multiple line entries. Procedures
for entering multiple line entries are described in User Interfaces
(Section 1.3).

For available export types enter:

help export

For information on a particular export type enter:

help export export_type

For more discussion see Section 3.1.

CODE export ascii

EXAMPLE ( gdt freqdata ) \

1 export ascii

2 output fdata.asc
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3 keep age,pay,sex

4 writevarnames

5 /

frename

PURPOSE Changes the file name associated with the active data set.

FORMAT frename new data set name

REMARKS The active data set is saved to disk under new data set name. The
original data set file is left unchanged as of the last commit.

To change the name of a data set file, use the operating system
command for renaming files.

CODE frename lgtsim

EXAMPLE ( gdt maxfact ) frename /data/factor

4 variables and 100 observations written to /data/factor.dat

( gdt factor )

See vrename, remove, recover

g

PURPOSE Executes GAUSS commands and statements in the active workspace.

FORMAT g gauss command or statement
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REMARKS Separate multiple statements with semi-colons (;).

allops and dotops do not effect code executed with the g statement.

EXAMPLE ( gdt . ) open cmlfact

( gdt . cmlfact ) cat fdata

( gdt . cmlfact ) g r = corrx(fdata)

Using cmlfact workspace

( gdt . cmlfact ) g print r

Using cmlfact workspace

1.0000000 0.66830903 0.32650504 0.21293355

0.66830903 1.0000000 0.30232712 0.24065234

0.32650504 0.30232712 1.0000000 0.59052208

0.21293355 0.24065234 0.59052208 1.0000000

( gdt . cmlfact ) g { p,v,a } = princomp(fdata,4)

Using cmlfact workspace

( gdt . cmlfact ) g print v

Using cmlfact workspace

0.55622722

0.27164763

0.094103380

0.078021774

( gdt . cmlfact )

SEE ALSO cat, split

import

PURPOSE Translates a data file to a GAUSS data set.

FORMAT import import type
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REMARKS The import statement syntax requires multiple line entries. Procedures
for entering multiple line entries are described in User Interfaces
(Section 1.3).

For available import types enter:

help import

For information on a particular import type enter:

help import import_type

For more discussion see Section 2.1.

CODE import ascii

EXAMPLE ( gdt ) \

1 import ascii

2 input mydata.asc

3 output mydata

4 invarline 1

5 vartypeline 2

6 skip 2

7 /

impute

PURPOSE Imputes missing data.

FORMAT impute impute method
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REMARKS The impute statement syntax requires multiple line entries. The
procedure for entering multiple line entries is described in User
Interfaces (Section 1.3).

For available imputation methods enter:

help impute

For information on a particular method enter:

help impute impute_method

CODE impute ems

EXAMPLE ( gdt . ) open freqdata

( gdt . freqdata ) stats

======================================================================

> freqdata 4 vars, 400 obs /gauss/examples/freqdata.dat

Variable Mean Std Dev Variance Minimum Maximum Valid Missing

----------------------------------------------------------------------

AGE 5.6784 2.9932 8.9593 1.0000 10.0000 398 2

PAY 1.9675 0.8019 0.6431 1.0000 3.0000 400 0

sex ----- ----- ----- ----- ----- ----- -----

WT 1.4699 0.3007 0.0904 1.0000 1.9900 400 0

( gdt . freqdata ) impute ems

WARNING: variable No. 3 may be categorical. Analysis

will continue with this variable coded to a sequence,

However, it may not conform to the assumptions of the

missing data model which requires Normality.

( gdt . * freqdata ) stats

======================================================================

> * freqdata 4 vars, 400 obs /gauss/examples/freqdata.dat

Variable Mean Std Dev Variance Minimum Maximum Valid Missing
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keep

----------------------------------------------------------------------

* AGE 5.6785 2.9858 8.9147 1.0000 10.0000 400 0

* PAY 1.9675 0.8019 0.6431 1.0000 3.0000 400 0

* sex 1.3850 0.4872 0.2374 1.0000 2.0000 400 0

* WT 1.4699 0.3007 0.0904 1.0000 1.9900 400 0

( gdt . * freqdata )

keep

PURPOSE Drops all variables except those listed.

FORMAT keep variable1[[, variable2, . . .]]

CODE keep y1, y2

EXAMPLE ( gdt factor ) lv

> factor 4 vars, 100 obs, /data/factor.dat

Y1 numeric

Y2 numeric

Y3 numeric

Y4 numeric

( gdt factor ) keep y1,y2

2 variables kept

( gdt * factor ) lv

> factor 2 vars, 100 obs, /data/factor.dat

Y1 numeric

Y2 numeric

SEE ALSO drop

ld
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PURPOSE Lists data sets that are on disk.

FORMAT ld file path

REMARKS Files in the current directory are displayed if file path is not specified.

CODE ld /data/examples

EXAMPLE ( gdt factor ) ld

garch free, 1 vars, 100 obs, /data/garch.dat

linear free, 5 vars, 100 obs, /data/linear.dat

logit2 free, 3 vars, 1000 obs, /data/logit2.dat

maxfact free, 4 vars, 100 obs, /data/maxfact.dat

sci free, 23 vars, 154 obs, /data/sci.dat

( gdt factor )

lv

PURPOSE Lists variables in the active or specified data set.

FORMAT lv [[handle]]

REMARKS The variables are listed in the order they appear in the data set.

CODE lv

lv histdata

EXAMPLE ( gdt freqdata ) lv

> freqdata 4 vars, 400 obs, /data/freqdata.dat

AGE numeric

PAY numeric
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sex character

WT numeric

( gdt freqdata )

merge

PURPOSE Merges data sets on a key variable or list of key variables.

FORMAT merge from handle on keyvar1, keyvar2, . . .
[[variables var1, var2, . . .]]

REMARKS The active data set is modified by the merge while the other is left
unchanged.

Data sets to be merged must have at least one common key variable
between them. Only observations that match on key variables in both
data sets are included in the merge. All other observations are deleted
from the active data set.

Key variables in both data sets must be sorted unique before merging.

If no variables are specified, all variables from the handle not in the
key variable list are merged into the active data set, otherwise, only the
specified variables from the handle are merged.

Merged variables with duplicate names in both the handle and active
data set are renamed.

CODE merge from empdata on empid variables department,

hiredate, position

EXAMPLE ( gdt . ) open sim1
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( gdt . sim1 ) lv

> sim1 2 vars, 100 obs, /data/sim1.dat

ky numeric

y1 numeric

( gdt . sim1 ) open sim2

( gdt . sim2 ) lv

> sim2 2 vars, 100 obs, /data/sim2.dat

ky numeric

y2 numeric

( gdt . sim2 ) merge from sim1 on ky

( gdt . * sim2 ) lv

> * sim2 3 vars, 100 obs, /data/sim2.dat

* ky numeric

* y2 numeric

* y1 numeric

( gdt . * sim2 )

SEE ALSO copy, sort, stack

model

PURPOSE Creates a data set from a model simulation.

FORMAT model model name

OUTPUT A new data set containing simulated data.

REMARKS The model statement syntax requires multiple line entries. Procedures
for entering multiple line entries are described in User Interfaces
(Section 1.3).

For available models enter:
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help model

For information on a particular model enter:

help model model name

CODE model probit

EXAMPLE ( gdt ) \

1 model arima

2 file test

3 depvar Y

4 indvar X1,X2

5 vcx 1,.4,1

6 ar .3,.1

7 ma .2

8 normal 1.5

9 open

10 /

( gdt . test ) report freq

CASES PROCESSED BY THIS PROCEDURE:

100 cases were kept out of 100.

0 deleted because of missing values.

Y 3.92054 |*

|***

Valid 100.0000 |*******

Missing 0.0000 |******

Mean 0.9487 |*****************

Std Dev 1.0865 |******************

Variance 1.1804 |*********

Mode -1.6957 |********

Minimum -1.6957 |**

Maximum 3.9205 -1.69574 |*****
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--------------------------------------------------------------------

Total N 100

--------------------------------------------------------------------

X1 2.77424 |**

|*

Valid 100.0000 |******

Missing 0.0000 |*******

Mean 0.1678 |***************

Std Dev 0.9554 |******************

Variance 0.9128 |**********

Mode -1.4980 |************

Minimum -1.4980 |**************

Maximum 2.7742 -1.49800 |*********

--------------------------------------------------------------------

Total N 100

--------------------------------------------------------------------

X2 2.88571 |**

|*

Valid 100.0000 |*****

Missing 0.0000 |*******

Mean 0.0246 |****************

Std Dev 0.9947 |******************

Variance 0.9894 |***************

Mode -2.1527 |*********

Minimum -2.1527 |****

Maximum 2.8857 -2.15270 |******

--------------------------------------------------------------------

Total N 100

--------------------------------------------------------------------

( gdt . test )
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nouse

PURPOSE Makes the active data set not active.

FORMAT nouse

REMARKS It is possible for no open data sets to be active.

CODE nouse freqdata

EXAMPLE ( gdt freqdata ) nouse freqdata

( gdt )

SEE ALSO use, open, close

open

PURPOSE Loads a data set into a workspace and makes it the active data set.

FORMAT open data set name

REMARKS Each open data set has its own workspace. The data are loaded into the
workspace as K Nx1 vectors. Vector names are the same as the data set
variable names.

If no arguments are included, a list of open data sets is displayed on the
screen.

CODE open examples/freqdata
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SEE ALSO close, use, nouse

p

PURPOSE Prints samples of one or more variables to the screen.

FORMAT p [[numobs]] [[var]]

REMARKS If no arguments are specified, the first numobs observations of each
variable in the data set are displayed on the screen. The default value of
numobs is 50. To change the default value, enter the numobs parameter
with no variable name. The default will remain changed until GDT is
restarted.

If a variable name is specified, the first numobs observations of the
specified variable are displayed, and options are given for viewing other
observations within that variable.

CODE p 100 age

EXAMPLE ( gdt tobit ) p 10

( gdt tobit ) p

Y =

[1:5] 0.19122822 -0.52539158 -0.15540838 0 -1.2125193

[6:10] 0 0.31077457 1.1137943 -0.93615974 0.80979624

CNST =

[1:10] 1 1 1 1 1 1 1 1 1 1

X1 =

GDT S R 4-27



pwd

[1:5] 0.59209035 0.25336661 0.88820146 -0.85628518 0.25278613

[6:10] 0.32553164 -0.036312038 0.94893974 -1.3409896 -0.22219151

X2 =

[1:5] -0.35181439 0.025950747 1.7658545 1.0476031 -0.78446166

[6:10] -0.12405032 -0.022460097 0.37790726 -0.79498798 -0.24560567

( gdt tobit ) p 25 y

Y =

[1:5] 0.19122822 -0.52539158 -0.15540838 0 -1.2125193

[6:10] 0 0.31077457 1.1137943 -0.93615974 0.80979624

[11:15 -0.79397375 0.56180099 -0.20987604 0.71051733 -0.68155363

[16:20] 0.98908776 1.0933305 0.04909111 -0.92224655 1.4741197

[21:25] -1.0520466 1.3088757 2.41852 0.13847887 2.1946464

(Next | Previous | Top | Bottom | ### | Show ### | Help | Quit) [N] n

Y =

[26:30] 0.22283408 -0.35802955 0.078518682 -0.30831094 -0.28662837

[31:35] -0.63163611 0 -0.16819537 1.0455784 0.28637601

[36:40] -0.19024424 0.19664649 -0.97867385 0.27319029 0.39976644

[41:45] 0.60695266 0.10849636 0.038987486 1.044837 0

[46:50] 0.52982032 -0.92003283 -0.11145973 -0.69712074 0.63632036

(Next | Previous | Top | Bottom | ### | Show ### | Help | Quit) [N] q

( gdt tobit )

pwd

PURPOSE Shows the current directory.

FORMAT pwd

CODE pwd
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EXAMPLE ( gdt . tobit ) pwd

Current directory: /data/examples

( gdt . tobit )

q, quit

PURPOSE Exits GDT

FORMAT q

quit

CODE q

quit

EXAMPLE ( gdt . tobit ) q

(/data/example)%

( gdt . tobit ) quit

(/data/example)%

recode

PURPOSE Recodes a variable to discrete values.

FORMAT recode [[vtype]] varname with

value1 for expression,
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value2 for expression,
...

valueN for expression

Valid vtypes are:

# numeric

$ character

% date

REMARKS If vtype is not specified, the type of the variable is unchanged.

value in the for clause must be a scalar value or a scalar-returning
expression.

The expression in the for clause must return a true or false (non-zero or
0) result; if the expression returns true (non-zero), the variable is
assigned the value in that for clause, otherwise, the variable value
remains unchanged.

The recode statement syntax requires multiple-line entries. The
procedure for entering and working in multi-line mode is described in
User Interfaces (Section 1.3).

Commas are required between each for expression; no comma is
required after the last for expression.

CODE recode # age with

1 for age < 21,

2 for age >= 21 and age < 30,

3 for age >= 31 and age < 40,

4 for age >= 41 and age < 50,

5 for age >= 50
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EXAMPLE ( gdt . gssocc ) \

1 recode educ with

2 1 for educ <= 8,

3 2 for educ > 8 and educ <= 12,

4 3 for educ > 12

5 /

( gdt . * gssocc ) \

1 report freq

2 use educ

3 /

CASES PROCESSED BY THIS PROCEDURE:

337 cases were kept out of 337.

0 deleted because of missing values.

educ 3.00000 |******************

|

Valid 337.0000 |

Missing 0.0000 |

Mean 2.4154 |****************

Std Dev 0.6264 |

Variance 0.3924 |

Mode 3.0000 |

Minimum 1.0000 |

Maximum 3.0000 1.00000 |***

Percents Percents

Value Count Cell Cum Value Count Cell Cum

--------------------------------------------------------------------

1 25 7.42 7.42 3 165 48.96 100.00

2 147 43.62 51.04

--------------------------------------------------------------------

Total N 337

--------------------------------------------------------------------

( gdt . * gssocc )

SEE ALSO code
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recover

PURPOSE Recovers a data set that has been removed.

FORMAT recover data set name

REMARKS The file associated with the removed data set is renamed by dropping
the .removed extension; the .removed file must still be on the disk.

SEE ALSO remove

remove

PURPOSE Closes and renames the specified data set.

FORMAT remove handle

REMARKS The data set must be open.

The data set is closed and the associated file is renamed by appending a
.removed extension; any previous extension in the filename remains
intact.

To delete a data set file from the disk, use the operating system
commands for deleting files.

CODE remove test

EXAMPLE ( gdt test ) remove test
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/data/test.dat renamed to /data/test.dat.removed

( gdt )

SEE ALSO recover

report

PURPOSE Presents data in various formats such as listings, tables, and plots.

FORMAT report report name

REMARKS The report statement syntax requires multiple line entries. Procedures
for entering multiple line entries are described in User Interfaces
(Section 1.3).

For available reports enter:

help report

For information on a particular report enter:

help report report_name

CODE report freq

EXAMPLE ( gdt freqdata ) \

1 report freq

2 use age,pay,sex

3 weight wt

4 /

GDT S R 4-33



report

CASES PROCESSED BY THIS PROCEDURE:

398 cases were kept out of 400.

2 deleted because of missing values.

age 10.00000 |******************

|****************

Valid 585.5600 |***************

Missing 0.0000 |************

Mean 5.6530 |****************

Std Dev 2.9763 |***************

Variance 8.8584 |*********

Mode 10.0000 |*****************

Minimum 1.0000 |***********

Maximum 10.0000 1.00000 |*****************

Percents Percents

Value Count Cell Cum Value Count Cell Cum

-----------------------------------------------------------------

1 67.94 11.60 11.60 6 62.25 10.63 58.04

2 44.42 7.59 19.19 7 49.54 8.46 66.50

3 67.52 11.53 30.72 8 58.63 10.01 76.51

4 36.66 6.26 36.98 9 65.77 11.23 87.75

5 61.07 10.43 47.41 10 71.76 12.25 100.00

-----------------------------------------------------------------

Total N 586

-----------------------------------------------------------------

pay 3.00000 |***************

|

Valid 587.9800 |

Missing 0.0000 |

Mean 1.9748 |******************

Std Dev 0.8008 |

Variance 0.6413 |

Mode 2.0000 |

Minimum 1.0000 |

Maximum 3.0000 1.00000 |*****************
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Percents Percents

Value Count Cell Cum Value Count Cell Cum

----------------------------------------------------------------

1 195.8 33.30 33.30 3 180.98 30.78 100.00

2 211.2 35.92 69.22

----------------------------------------------------------------

Total N 588

----------------------------------------------------------------

sex F |******************

M |************

Valid 587.9800

Missing 0.0000

Mode F

Percents Percents

Value Count Cell Cum Value Count Cell Cum

-----------------------------------------------------------------

F 360.92 61.38 61.38 M 227.06 38.62 100.00

-----------------------------------------------------------------

Total N 588

-----------------------------------------------------------------

( gdt freqdata )

rollback

PURPOSE Discards all changes since the last commit.

FORMAT rollback [[handle, handle, . . .]]

REMARKS All changes to the data set since the last commit are discarded.

If handle is not specified, the active data set is rolled back.
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The frename command is not rolled back.

CODE rollback

rollback hist, proj

SEE ALSO commit

sample

PURPOSE Creates a random sample of observations in a data set.

FORMAT sample num% [[without]]

sample num obs [[without]]

REMARKS This command modifies the data set by deleting observations; consider
using frename before executing sample.

If % is appended to num, the sample will consist of the specified
percentage of observations, otherwise, the data set is modified to
contain num obs observations.

If without is added, sampling is without replacement, otherwise, it is
with replacement.

CODE sample 10%

sample 1000

EXAMPLE ( gdt freqdata ) stats
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> freqdata 4 vars, 400 obs /data/freqdata.dat

Variable Mean Std Dev Variance Minimum Maximum Valid Missing

--------------------------------------------------------------------

AGE 5.6784 2.9932 8.9593 1.0000 10.0000 398 2

PAY 1.9675 0.8019 0.6431 1.0000 3.0000 400 0

sex ----- ----- ----- ----- ----- ----- -----

WT 1.4699 0.3007 0.0904 1.0000 1.9900 400 0

( gdt freqdata ) sample 10%

( gdt * freqdata ) stats

> * freqdata 4 vars, 40 obs /data/freqdata.dat

Variable Mean Std Dev Variance Minimum Maximum Valid Missing

--------------------------------------------------------------------

* AGE 6.4872 2.8365 8.0459 1.0000 10.0000 39 1

* PAY 1.9750 0.8002 0.6404 1.0000 3.0000 40 0

* sex ----- ----- ----- ----- ----- ----- -----

* WT 1.4400 0.3133 0.0981 1.0000 1.9800 40 0

( gdt * freqdata )

SEE ALSO frename

select

PURPOSE Selects observations based on an expression.

FORMAT select where expression

REMARKS This command deletes all observations that do not match the
expression.

CODE select where age >= 21 and age <= 45

EXAMPLE ( gdt . * tobit ) select where y <= -3.9
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Selected 61 of 61 rows from tobit, 0 rows dropped

( gdt . * tobit )

SEE ALSO delete

show

PURPOSE Shows the content of the active data set workspace.

FORMAT show

REMARKS Each open data set has its own workspace.

Use cleanup to remove all data in the workspace that are not variables
of the data set.

CODE show

EXAMPLE
( gdt . nlls ) show

1200 bytes T MATRIX 150,1

1200 bytes Y MATRIX 150,1

SEE ALSO cleanup

sort

PURPOSE Sorts the active data set.
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FORMAT sort [[unique]] on var1, var2, . . .

REMARKS Use unique to exclude duplicate observations—where more than one
observation contains the same key variable value, only one observation
will be included.

CODE sort on age, date

sort unique on age, date

split

PURPOSE Splits a matrix into individual vectors.

FORMAT split name of matrix

REMARKS Splits a matrix in the data set workspace into individual vectors. The
matrix must contain as many columns as there are variables in the data
set and the columns must be in the same order as the lv variable list.

The number of observations in the data set may change but the number
of variables will not.

CODE split statdat

EXAMPLE ( gdt maxfact ) cat max0

( gdt maxfact ) g max0 = (max0 - meanc(max0)’) ./ stdc(max0)’

Using maxfact workspace

( gdt maxfact ) stats

> maxfact 4 vars, 100 obs /data/maxfact.dat

Variable Mean Std Dev Variance Minimum Maximum Valid Missing
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---------------------------------------------------------------------

Y1 0.0275 1.0706 1.1461 -3.1796 2.8096 100 0

Y2 0.0041 0.8206 0.6734 -1.4813 2.7042 100 0

Y3 0.1155 0.9598 0.9212 -1.9176 3.8984 100 0

Y4 0.1058 0.8382 0.7025 -2.1307 2.1470 100 0

( gdt maxfact ) split max0

( gdt * maxfact ) stats

> * maxfact 4 vars, 100 obs /data/maxfact.dat

Variable Mean Std Dev Variance Minimum Maximum Valid Missing

---------------------------------------------------------------------

* Y1 0.0000 1.0000 1.0000 -2.9958 2.5987 100 0

* Y2 -0.0000 1.0000 1.0000 -1.8101 3.2904 100 0

* Y3 -0.0000 1.0000 1.0000 -2.1182 3.9413 100 0

* Y4 -0.0000 1.0000 1.0000 -2.6682 2.4353 100 0

( gdt * maxfact )

SEE ALSO cat

stack

PURPOSE Appends observations from the specified data set to the active data set.

FORMAT stack handle

REMARKS Only variables in the source data set with the same names as variables
in the active data set will be copied.

This command will not work if the active data set contains variables
that are not also contained in the source data set.

CODE stack gssocc
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EXAMPLE ( gdt . ) open maxsimeq

( gdt . maxsimeq ) open maxnleq

( gdt . maxnleq ) stats

====================================================================

> maxnleq 4 vars, 100 obs maxnleq.dat

Variable Mean Std Dev Variance Minimum Maximum Valid Missing

--------------------------------------------------------------------

Y1 1.4516 1.9119 3.6553 -2.4473 8.3456 100 0

Y2 1.4347 1.9034 3.6227 -1.7680 7.7942 100 0

X1 0.0581 0.9999 0.9997 -2.1374 2.2291 100 0

X2 -0.0789 1.0497 1.1019 -2.3797 2.0961 100 0

( gdt . maxnleq ) stack maxsimeq

( gdt . * maxnleq ) stats

> * maxnleq 4 vars, 200 obs maxnleq.dat

Variable Mean Std Dev Variance Minimum Maximum Valid Missing

--------------------------------------------------------------------

* Y1 1.3815 1.5549 2.4177 -2.4473 8.3456 200 0

* Y2 1.4360 1.5223 2.3174 -1.7680 7.7942 200 0

* X1 0.0324 1.0110 1.0222 -2.6835 2.9954 200 0

* X2 -0.0723 1.0445 1.0909 -3.0756 2.5930 200 0

( gdt . * maxnleq )

stats

PURPOSE Computes statistics on the active data set.

FORMAT stats [[var1, var2, ...]]

REMARKS If no variables are given, all variables are included.

If no data set is active, statistics are generated for all open data sets.
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CODE stats

stats age, pay

EXAMPLE ( gdt . maxnleq ) stats

> maxnleq 4 vars, 100 obs maxnleq.dat

Variable Mean Std Dev Variance Minimum Maximum Valid Missing

--------------------------------------------------------------------

Y1 1.4516 1.9119 3.6553 -2.4473 8.3456 100 0

Y2 1.4347 1.9034 3.6227 -1.7680 7.7942 100 0

X1 0.0581 0.9999 0.9997 -2.1374 2.2291 100 0

X2 -0.0789 1.0497 1.1019 -2.3797 2.0961 100 0

( gdt . maxnleq )

use

PURPOSE Makes the specified data set the active data set.

FORMAT use handle

REMARKS To see open data sets, use the open statement with no arguments.

CODE use freqdata

EXAMPLE ( gdt ) use freqdata

( gdt freqdata )

SEE ALSO nouse, open, close
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vrename

PURPOSE Renames a variable.

FORMAT vrename old name new name

CODE vrename hst newhst

EXAMPLE ( gdt . ) open hensher

( gdt . hensher ) lv

> hensher 8 vars, 840 obs, hensher.dat

MODE numeric

TTME numeric

INVC numeric

INVT numeric

GC numeric

HINC numeric

PSIZE numeric

AIRHINC numeric

( gdt . hensher ) vrename ttme traveltime

( gdt . * hensher ) lv

> * hensher 8 vars, 840 obs, hensher.dat

MODE numeric

* traveltime numeric

INVC numeric

INVT numeric

GC numeric

HINC numeric

PSIZE numeric

AIRHINC numeric

( gdt . * hensher )

SEE ALSO open
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vtype

PURPOSE Changes the variable type of a variable.

FORMAT vtype new type var1[[, var2, . . .]]

Valid types are:

# numeric

$ character

% date

CODE vtype # sex

EXAMPLE ( gdt . freqdata ) sex = sex $== "F"

( gdt . * freqdata ) vtype # sex

1 variables set to type numeric

( gdt . * freqdata ) lv

> * freqdata 4 vars, 400 obs, freqdata.dat

AGE numeric

PAY numeric

* sex numeric

WT numeric

( gdt . * freqdata )

SEE ALSO open
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A

active data set, 1-3
add, 4-1
allops, 4-3
append, export, 3-2
append, import, 2-4, 2-27
arima simulation, 1-14
ASCII File Conversion, 2-1, 3-1
ASCII files, packed, 2-12
asterisk, 1-3

C

cat, 4-4
cd, 4-5
cleanup, 4-6
close, 4-6
cmdfile, import, 2-4
code, 4-7
commit, 4-10
complex, import, 2-6
copy, 4-10

create, 4-11

D

datarange, export, 3-12
datarange, import, 2-28
datasheet, export, 3-12
datasheet, import, 2-28
dateformat, export, 3-3
dateformat, import, 2-6
delete, 4-13
deletefile, export, 3-13
delimit, import, 2-7
delimited, hard, 2-9
delimited, soft, 2-8
dotops, 4-13
drop, 4-14
drop, export, 3-4, 3-13

E

Excel File Conversion, 2-24, 3-9
Export, 3-1
export, 4-15
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finaldelim, export, 3-4
frename, 4-16

G

g, 4-16
garch simulation, 1-15
GDT, 1-1

H

handle, 1-3
hard delimited, 2-9

I

Import, 2-1
import, 4-17
impute, 4-18
input, import, 2-8, 2-28
Introduction, 1-1
invar, import, 2-8
invarline, import, 2-14

K

keep, 4-20
keep, export, 3-5, 3-13

L

ld, 4-20
linear simulation, 1-15
logit simulation, 1-16
lv, 4-21

M

merge, 4-22
model, 4-23
msym, import, 2-15

N

namerange, export, 3-13
namerange, import, 2-29
names, import, 2-29
namesheet, export, 3-14
namesheet, import, 2-30
nocheck, import, 2-15
noquote, export, 3-5
nouse, 4-26

O

obsdelim, export, 3-5
open, 4-26
open, import, 2-16, 2-30
ordered logit simulation, 1-16
ordered probit simulation, 1-16
output, export, 3-5, 3-14
output, import, 2-16, 2-30
outtyp, import, 2-17
outvar, import, 2-18
overwrite, export, 3-6
overwrite, import, 2-31

P

p, 4-27
packed ASCII, 2-12
probit simulation, 1-17
pwd, 4-28
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Q

q, 4-29
quit, 4-29

R

recode, 4-29
recover, 4-32
remove, 4-32
report, 4-33
rollback, 4-35

S

sample, 4-36
Scalar and Element by Element

Operations, 1-11
select, 4-37
show, 4-38
simulation, 1-13
skip, import, 2-18
soft delimited, 2-8
sort, 4-38
split, 4-39
stack, 4-40
stats, 4-41

T

transformations, 1-4
translate, export, 3-15
translate, import, 2-31
typecase, import, 2-19

U

update, export, 3-16
use, 4-42
User Interfaces, 1-4

V

vardelim, export, 3-6
vartype, import, 2-19
vartypeline, import, 2-20
vrename, 4-43
vtype, 4-44

W

workspace, 1-1
writevarnames, export, 3-7
writevartypes, export, 3-7
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