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Abstract

Gradient boosting constructs additive regression models by sequentially �tting a simple
parameterized function (base learner) to current \pseudo"{residuals by least{squares at
each iteration. The pseudo{residuals are the gradient of the loss functional being minimized,
with respect to the model values at each training data point, evaluated at the current step. It
is shown that both the approximation accuracy and execution speed of gradient boosting can
be substantially improved by incorporating randomization into the procedure. Speci�cally,
at each iteration a subsample of the training data is drawn at random (without replacement)
from the full training data set. This randomly selected subsample is then used in place of the
full sample to �t the base learner and compute the model update for the current iteration.
This randomized approach also increases robustness against overcapacity of the base learner.

1 Gradient Boosting

In the function estimation problem one has a system consisting of a random \output" or \re-
sponse" variable y and a set of random \input" or \explanatory" variables x = fx1; � � �; xng.
Given a \training" sample fyi;xig

N
1 of known (y;x){values, the goal is to �nd a function F �(x)

that maps x to y, such that over the joint distribution of all (y;x){values, the expected value
of some speci�ed loss function 	(y; F (x)) is minimized

F �(x) = argmin
F (x)

Ey;x	(y; F (x)): (1)

Boosting approximates F �(x) by an \additive" expansion of the form

F (x) =

MX
m=0

�mh(x; am); (2)

where the functions h(x; a) (\base learner") are usually chosen to be simple functions of x with
parameters a = fa1; a2; � ��g. The expansion coe�cients f�mg

M
0 and the parameters famg

M
0 are

jointly �t to the training data in a forward \stage{wise" manner. One starts with an initial
guess F0(x), and then for m = 1; 2; � � �;M

(�m; am) = argmin
�;a

NX
i=1

	(yi; Fm�1(xi) + �h(xi; a)) (3)

and

Fm(x) = Fm�1(x) + �mh(x; am): (4)
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Gradient boosting (Friedman 1999) approximately solves (3) for arbitrary (di�erentiable) loss
functions 	(y; F (x)) with a two step procedure. First, the function h(x; a) is �t by least{squares

am = argmin
a;�

NX
i=1

[~yim � �h(xi; a)]
2 (5)

to the current \pseudo"{residuals

~yim = �

�
@	(yi; F (xi))

@F (xi)

�
F (x)=Fm�1(x)

: (6)

Then, given h(x; am), the optimal value of the coe�cient �m is determined

�m = argmin
�

NX
i=1

	(yi; Fm�1(xi) + �h(xi; am)) : (7)

This strategy replaces a potentially di�cult function optimization problem (3) by one based
on least{squares (5), followed by a single parameter optimization (7) based on the general loss
criterion 	.

Gradient tree boosting specializes this approach to the case where the base learner h(x; a) is
an L{terminal node regression tree. At each iteration m, a regression tree partitions the x{space
into L{disjoint regions fRlmg

L
l=1 and predicts a separate constant value in each one

h(x; fRlmg
L
1 ) =

LX
l=1

�ylm 1(x 2 Rlm): (8)

Here �ylm = meanxi2Rlm
(~yim) is the mean of (6) in each region Rlm. The parameters of this

base learner are the splitting variables and corresponding split points de�ning the tree, which in
turn de�ne the corresponding regions fRlmg

L
1 of the partition at the mth iteration. These are

induced in a top{down \best{�rst" manner using a least{squares splitting criterion (Friedman,
Hastie, and Tibshirani 1998). With regression trees, (7) can be solved separately within each
region Rlm de�ned by the corresponding terminal node l of the mth tree. Because the tree (8)
predicts a constant value �ylm within each region Rlm, the solution to (7) reduces to a simple
\location" estimate based on the criterion 	


lm = argmin



X
xi2Rlm

	(yi; Fm�1(xi) + 
) :

The current approximation Fm�1(x) is then separately updated in each corresponding region

Fm(x) = Fm�1(x) + � � 
lm1(x 2 Rlm):

The \shrinkage" parameter 0 < � � 1 controls the learning rate of the procedure. Empirically
(Friedman 1999), it was found that small values (� � 0:1) lead to much better generalization
error.

This leads to the following algorithm for generalized boosting of decision trees:

Algorithm 1: Gradient TreeBoost

1 F0(x) = argmin

PN

i=1	(yi; 
)
2 For m = 1 to M do:

3 ~yim = �
h
@	(yi;F (xi))

@F (xi)

i
F (x)=Fm�1(x)

; i = 1; N

4 fRlmg
L
1 = L� terminal node tree(f~yim;xig

N
1 )

5 
lm = argmin

P

xi2Rlm
	(yi; Fm�1(xi) + 
)

6 Fm(x) = Fm�1(x) + � � 
lm1(x 2 Rlm)
7 endFor
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Friedman 1999 presented speci�c algorithms based on this template for several loss criteria
including least{squares: 	 (y; F ) = (y � F )2, least{absolute{deviation: 	 (y; F ) = jy � F j,
Huber{M: 	 (y; F ) = (y � F )2 1( jy � F j � � ) + 2�(jy � F j � �=2) 1( jy � F j > � ), and for
classi�cation, K{class multinomial negative log{likelihood .

2 Stochastic gradient boosting

With his \bagging" procedure, Breiman (1996) introduced the notion that injecting randomness
into function estimation procedures could improve their performance. Early implementations of
AdaBoost (Freund and Schapire 1996) also employed random sampling, but this was considered
an approximation to deterministic weighting when the implementation of the base learner did
not support observation weights, rather than as an essential ingredient. Recently, Breiman 1999
proposed a hybrid bagging{boosting procedure (\adaptive bagging") intended for least{squares
�tting of additive expansions (2). It replaces the base learner in regular boosting procedures with
the corresponding bagged base learner, and substitutes \out{of{bag" residuals for the ordinary
residuals at each boosting step.

Motivated by Breiman 1999, a minor modi�cation was made to gradient boosting (Algorithm
1) to incorporate randomness as an integral part of the procedure. Speci�cally, at each iteration
a subsample of the training data is drawn at random (without replacement) from the full training
data set. This randomly selected subsample is then used, instead of the full sample, to �t the
base learner (line 4) and compute the model update for the current iteration (line 5).

Let fyi;xig
N
1 be the entire training data sample and f�(i)gN1 be a random permutation of

the integers f1; � � �; Ng. Then a random subsample of size ~N < N is given by fy�(i);x�(i)g
~N
1 .

The stochastic gradient boosting algorithm is then

Algorithm 2: Stochastic Gradient TreeBoost

1 F0(x) = argmin

PN

i=1	(yi; 
)
2 For m = 1 to M do:
3 f�(i)gN1 = rand perm figN1

4 ~y�(i)m = �
h
@	(y�(i);F (x�(i)))

@F (x�(i))

i
F (x)=Fm�1(x)

; i = 1; ~N

5 fRlmg
L
1 = L� terminal node tree(f~y�(i)m;x�(i)g

~N
1 )

6 
lm = argmin

P

x�(i)2Rlm
	
�
y�(i); Fm�1(x�(i)) + 


�
7 Fm(x) = Fm�1(x) + � � 
lm1(x 2 Rlm)
8 endFor

Using ~N = N introduces no randomness and causes Algorithm 2 to return the same result
as Algorithm 1. The smaller the fraction f = ~N=N , the more the random samples used in
successive iterations will di�er, thereby introducing more overall randomness into the procedure.
Using the value f = 1=2 is roughly equivalent to drawing bootstrap samples at each iteration.
Using ~N = f � N also reduces computation by a factor of f . However, making the value of f
smaller reduces the amount of data available to train the base learner at each iteration. This
will cause the variance associated with the individual base learner estimates to increase.

3 Simulation studies

The e�ect of randomization on Gradient Tree Boost procedures will likely depend on the par-
ticular problem at hand. Important characteristics of problems that a�ect performance include
training sample size N , true underlying \target" function F �(x) (1), and the distribution of
the departures, ", of y jx from F �(x). In order to gauge the value of any estimation method
it is necessary to accurately evaluate its performance over many di�erent situations. This is
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most conveniently accomplished through Monte Carlo simulation where data can be generated
according to a wide variety of prescriptions, and resulting performance accurately calculated.

One of the most important characteristics of any problem a�ecting performance is the true
underlying target function F �(x) (1). Since the nature of the target function can vary greatly
over di�erent problems, and is seldom known, we evaluate the relative merits of randomized
gradient tree gradient boosting on a variety of di�erent targets randomly drawn from a broad
\realistic" class of functions. The procedure used here to generate the random functions is
described in Friedman 1999. The simulation studies below are based on the same 100 randomly
generated target functions used in Friedman 1999.

Performance is based on the average{absolute{error of the derived estimate F̂ (x) in approx-
imating each target F �(x)

A(F̂ ) = ExjF
�(x)� F̂ (x)j (9)

as estimated from a large independent test data set. Performance comparisons among several
di�erent estimates fF̂k(x)g

K
1 are based on the absolute error (9) of each one relative to the best

performer

R(F̂k) = A(F̂k)
.
minfA(F̂l)g

K
1 : (10)

Thus, for each of the 100 target functions, the best method k� = argminkfA(F̂k)g
K
1 receives

the value R(F̂k�) = 1:0, and the others receive a larger value fR(F̂k) > 1:0gk 6=k� . If a particular
method was best (smallest error) for every target, its distribution of (10) over all 100 target
functions would be a point mass at the value 1:0.

3.1 Regression

In this section, the e�ect of randomization on the (Huber) M TreeBoost procedure is investigated.
Among the regression procedures derived in Friedman 1999, M TreeBoost had the best overall
performance and was considered the method of choice. Its break{down parameter was set to
the default value � = 0:9. For small data sets (N = 500) the shrinkage parameter � (Algorithm
2) was set to � = 0:005. For the larger ones (N = 5000) it was set to � = 0:05. Best{�rst
regressions trees with six terminal nodes were used as the base learner.

Here we compare various levels of randomization in terms of performance over the 100 target
functions for two di�erent error distributions. One hundred data sets fyi;xig

N
1 were generated

according to

yi = F �(xi) + "i (11)

where F �(x) represents each of the 100 randomly generated target functions. For the �rst study,
the errors "i were generated from a Gaussian distribution with zero mean, and variance adjusted
so that

Ej"j = ExjF
�(x)�medianxF

�(x)j (12)

giving a 1=1 signal{to{noise ratio. For the second study the errors were generated from a \slash"
distribution, "i = s � (u=v), where u v N(0; 1) and v v U [0; 1]. The scale factor s is adjusted
to give a 1=1 signal{to{noise ratio (12). The slash distribution has very thick tails and is often
used as an extreme to test robustness.

3.1.1 Gaussian errors

Figure 1 compares the performance of M TreeBoost for di�erent degrees of randomization, for
small training data sets (N = 500). The degree of randomness is controlled by the fraction
f = ~N=N of randomly drawn observations used to train the regression tree at each iteration.
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Figure 1: Distributions of absolute approximation error, relative to the best, for training on dif-
ferent fractions of randomly selected observations from the full training sample at each iteration,
for small data sets and Gaussian errors.

Shown are the distributions of fR(F̂f )g
8
1 (10) over the 100 targets, for eight values of f . The

largest value f = 1:0 corresponds to deterministic boosting (Algorithm 1), while successively
smaller values introduce increasing degrees of randomness. The eight distributions are each
summarized by boxplots. The shaded area of each boxplot shows the interquartile range of
the distribution with the enclosed white bar being the median. The outer hinges represent the
points closest to (plus/minus)1.5 interquartile range units from the (upper/lower) quartiles. The
isolated bars represent individual points outside this range (outliers).

One sees from Fig. 1 that randomization improves performance substantially. For all values
of f < 1:0, except the most extreme one (f = 0:1), the distribution of absolute error relative to
the best (10) is much closer to the minimum value of 1:0 than is the corresponding distribution for
deterministic algorithm (f = 1:0). Averaged over these 100 target functions, the best value of the
sampling fraction as is approximately 40% (f = 0:4) where there is a typical improvement of 11%
in absolute error (9) over no sampling. (This represents a 22% improvement on the squared{error
scale.) However, sampling only 30% or even 20% of the data at each iteration gives considerable
improvement over no sampling at all, with a corresponding computational speed{up by factors
of 3 and 5 respectively. For sampling fractions close to optimal (f = 0:4), the dispersion of the
distributions is also smaller. This means that for nearly all of the targets they produced the
best, or close to the best , average absolute errors. Sampling fractions farther from the optimal
value have more dispersion in their distributions. On some targets they produced best or close
to best results, while on others they did very badly. This illustrates that relative performance
can depend strongly on the particular target encountered. For example, there was one target
function (out of the 100) for which f = 0:1 produced the lowest error. The distribution for
f = 1:0 indicates that using a sampling fraction of around 50% produces improvements over no
sampling in the range of about 4% to 24% in absolute error, with a median of 11%.

Figure 2 shows a similar comparison over the same 100 target functions and error distribution,
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Figure 2: Distributions of absolute approximation error, relative to the best, for training on dif-
ferent fractions of randomly selected observations from the full training sample at each iteration,
for moderate sized data sets and Gaussian errors.

but for moderate sized training data sets (N = 5000). Here one sees a similar but less dramatic
pattern. Note that the vertical scale of Fig. 2 is half that of Fig. 1. The optimal sampling
fraction is closer to 60% and typical improvements over the deterministic algorithm are from 1%
to 11% in absolute error with a median of 5%. Although the increase in accuracy associated with
random sampling is less dramatic with larger data sets, the speed increase is more meaningful.

Figure 3 compares the performance on small data sets (N = 500) of M TreeBoost using
di�erent sized regression trees as the base learner. The left panel shows the distribution over the
100 target functions of absolute error relative to the best (10) for L 2 f3; 6; 11; 21; 41g using the
deterministic algorithm. The right panel show the corresponding distributions for 50% sampling
(f = 0:5). In both cases the optimal tree size as averaged over the 100 targets is L = 6.
Increasing the capacity of the base learner by using larger trees degrades performance through
\over{�tting". However, one sees that applying randomization (f = 0:5) moderates the e�ect of
over{�tting. The increase in median of the relative error (10) distribution in going from L = 6
to L = 41 for 50% sampling is only one{third that for the deterministic algorithm.

Figure 4 shows the same e�ect from a di�erent perspective. Here the distribution of the ratio
of the error of the deterministic algorithm to that using 50% sampling (A(F̂1:0)=A(F̂0:5)) (9) is
shown as a function of tree size. For three and six terminal node trees, deterministic M TreeBoost
typically is seen to be 8% worse in absolute error than using 50% random sampling. For 41{node
trees that ratio is typically close to 20%. Thus, random subsampling is more e�ective in reducing
error with larger trees, and can thereby mitigate, if not eliminate, the e�ect of over{capacity of
the base learner.

3.1.2 Slash errors

Gaussian error distribution is a well behaved ideal that is seldom realized in practice. To check
the extent to which the e�ect of randomization depends upon the error distribution we applied
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Figure 3: Distributions of absolute approximation error, relative to the best, for di�erent sized
regression trees as base learner, for small (N = 500) training samples. The left panel is for
training on the full sample. The right panel is with 50% random subsampling at each iteration.

M TreeBoost to the same 100 target functions with slash distributed errors "i (11). The slash
distribution represents an opposite extreme to the Gaussian with very thick tails and many
outliers. Figure 5 shows performance comparisons analogous to Fig. 1 and Fig. 2, but with
slash rather than Gaussian errors. The distributions of relative error (10) for both sample sizes
resemble those for the large (N = 5000) sample with Gaussian errors (Fig. 2). In particular,
for the small sample size, the performance gain through random sampling is roughly half that
achieved with Gaussian errors. For the larger sample, improvement is relatively insensitive to
the sampling fraction f in the range 0:5 � f � 0:8.

3.2 Classi�cation

Here we consider a Bernoulli distributed output variable y 2 f�1; 1g with Pr(y = 1 jx) =
1=(1 + exp(�2F (x))). An appropriate loss criterion is the \deviance" (twice binomial negative
log{likelihood) 	(y; F̂ ) = 2 log(1 + exp(�2yF̂ )): It serves as a continuous surrogate for misclas-
si�cation error 1(yF̂ < 0). Data was generated using the same 100 target functions as above.
For each target F �(x), the median ~F = medianxF

�(x) was computed. The data set for each
trial was taken to be fyi = sign(F �(xi) � ~F ); xig

N
1 . Thus, there are equal numbers in the two

classes and the Bayes error rate is zero. However, the decision boundaries induced by many of
the F �(x) are fairly complex.

Figure 6 shows the distribution of the error rate e(F̂ ) = Ey;x1(yF̂ (x) < 0) , relative to the

best e(F̂k)
.
minfe(F̂l)g

K
1 , for several values of the sampling fraction f . The left panel shows

the distributions for the small samples, while the right panel shows them for the larger ones.
One sees behavior similar, but not identical, to the regression case. Randomization is bene�cial
on average, but not as universally so as with regression. The distributions corresponding to
f{values close to optimal (0:5 � f � 0:8) have higher medians and larger spreads, especially for
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Figure 4: Distributions of the ratio of the error of the deterministic algorithm to that using
50% sampling with di�erent sized regression trees as base learner, for small (N = 500) training
samples.
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Figure 5: Distributions of absolute approximation error, relative to the best, for training on dif-
ferent fractions of randomly selected observations from the full training sample at each iteration,
with slash errors. The left panel is for small data sets and the right one is for moderately sized
data sets.
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Figure 6: Distributions of error rate, relative to the best, for training on di�erent fractions
of randomly selected observations from the full training sample at each iteration, for a binary
valued output variable. The left panel is for small data sets and the right one is for moderately
sized data sets.

the larger sample. This indicates there is less assurance that randomization will improve error
rate in individual situations. In fact, no sampling (f = 1:0) had smaller error than any of the
sampling fractions f < 1:0 on three of the 100 targets for N = 500, and on �ve of them for
N = 5000.

4 Discussion

The results of the previous section indicate that the accuracy of gradient boosting can be sub-
stantially improved by introducing randomization through the simple expedient of training the
base learner on di�erent randomly selected data subsets at each iteration. The degree of im-
provement is seen to depend on the particular problem at hand in terms of the training sample
size N , the true underlying target function F �(x) (1), the distribution of y jx (Gaussian, slash,
Bernoulli), and the capacity of the base learner. The reason why this randomization produces
improvement is not clear. The fact that it is most e�ective for small samples, and with high
capacity base learners, suggest that variance reduction is an important ingredient. Using smaller
subsamples causes the variance of the individual base learner estimates at each iteration to in-

crease. However, there is less correlation between the these estimates at di�erent iterations.
This tends to reduce the variance of the combined model (2), which in e�ect averages the base
learner estimates. Apparently the latter averaging e�ect dominates the former one even for
surprisingly small subsamples. This phenomenon is well known in bagging, where bootstrap
sampling produces random subsamples with e�ective size roughly half that of the full training
sample. Stochastic gradient boosting can be viewed in this sense as an boosting{bagging hybrid.
Adaptive bagging (Breiman 1999) represents an alternative hybrid approach.

The results obtained here suggest that the original stochastic versions of AdaBoost may
have merit beyond that of implementation convenience. With deterministic AdaBoost, weights
assigned to each observation are recomputed at successive iterations so as to emphasize observa-
tions that are currently di�cult to correctly predict. Rather than weighting, stochastic AdaBoost
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draws random unweighted samples (with replacement) from the full training sample, with the
probability of an observation being selected being proportional to its currently computed weight.
This injects a random component into the procedure that tends to reduce the correlation between
solutions at successive iterations. The usual prescription is to make the randomly drawn sam-
ple the same size as the original training data set. The results for stochastic gradient boosting
suggest that stochastic AdaBoost's accuracy might also be improved by increasing randomness
through drawing smaller samples at each iteration. This produces a computational savings as
well.
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