
Wolfram SystemModeler™

Getting Started

Semmel
ADDITIVE Logo

Semmel
Mathematica-Adresse

i

Contents

1 Introduction 1

2 Hello World 5

2.1 Hello World Model . 5
2.1.1 Exercise . 11

3 Multidomain—A Servo Mechanism 13

3.1 DC Motor . 13
3.2 Stiff and Weak Axis . 20

3.2.1 Exercise . 23
3.3 Control System . 23
3.4 Sensitivity Analysis . 28

4 Component-Based—Simple Circuit 31

4.1 Block-Based Circuit . 31
4.2 Component-Based Circuit . 34

4.2.1 Exercise . 38

5 Custom Component—Chain Pendulum 39

5.1 Chain Link Component . 39
5.2 Chain Pendulum Model . 43

5.2.1 Exercise . 44

ii
6 External Function—Chirp Signal 45

6.1 Chirp Function . 45
6.2 Modeling . 46

6.2.1 Exercise . 49

7 Hierarchical Model—Tank System 51

7.1 Flat Tank . 51
7.2 Component-Based Tank . 53

7.2.1 Interfaces . 55
7.2.2 Tank Components . 56
7.2.3 Controllers . 57
7.2.4 Small Tank System . 59

7.3 Tank with Continuous PID Controller . 60
7.4 Three Tank System . 62

8 System—Inverted Pendulum 63

8.1 Inverted Pendulum . 63

9 Modelica Aspects and Modeling Advice 65

9.1 Initial Values . 65
9.1.1 Start Attribute . 65

Guess Values . 66
9.1.2 Initial Equations and Algorithms . 66

9.2 Events . 67
9.3 The MultiBody Library . 68

9.3.1 Initial Values . 68
9.3.2 Angle and Position of Objects . 69
9.3.3 Animations . 69
9.3.4 CAD Shapes . 70

9.4 General Advice . 71

Chapter 1: Introduction 1
Chapter 1: Introduction

This document contains examples that are useful for getting started with Wolfram
SystemModelerTM. The examples have a detailed step by step description of how to build
and simulate the models.

It is recommended that you go through the examples in the order given. Note that all ex-
amples are also available in the IntroductoryExamples library. You can browse the
package structure of the IntroductoryExamples library by using the Class Browser.

Figure 1-1: Browsing the package structure of the IntroductoryExamples library using the
Class Browser.

Double-clicking the name of a package will open the package as a new tree and show its
contents in the Class Browser. Double-clicking on the name of a model will open the mod-
el in a class window.

2 Chapter 1: Introduction
Additional information about the models in the IntroductoryExamples library is inte-
grated into the packages and models and may be viewed by right-clicking any package or
model in the Class Browser and choosing View Documentation from the popup menu.

Figure 1-2: Viewing the documentation of a model.

The documentation of the classes will be shown in the Class Documentation Browser.

Chapter 1: Introduction 3
Figure 1-3: The documentation of the IntroductoryExamples.Analysis package.

4 Chapter 1: Introduction

Chapter 2: Hello World 5
Chapter 2: Hello World

The most basic Modelica model is a differential equation. In this example, a differential
equation is implemented and simulated. Also, the process of creating an icon representing
the model graphically is described in detail.

2.1 Hello World Model

There is a long tradition that the first example in any computer language is a trivial program
printing the string "Hello World". Since Modelica, the language used in SystemModeler, is
an equation-based language, printing a string does not make much sense. Instead our Hello
World Modelica program solves a trivial differential equation:

The variable x in this equation is a dynamic variable (and a state variable) whose value can
change over time. The time derivative is the derivative of x, written as der(x) in Model-
ica. All Modelica programs consist of a class declaration (block, model, package, etc.).
In this example we will declare the program as a model.

x· x–=

6 Chapter 2: Hello World
We begin by creating a new model at the top level of the Modelica package hierarchy, i.e.
the model will not be located inside a package. Choose New Class from the File menu.

Figure 2-1: Choosing New Class from the File menu.

This will open the New Class dialog box, in which we will specify a name and description
for the model. Give the model the name "HelloWorld" and the description "A differential
equation".

Figure 2-2: Specifying a name and description for a new model.

After clicking the OK button, the model will be created and become visible in the Class
Browser. At the same time, the model will also be opened in a class window. Click the
Modelica Text View button in the toolbar to switch to the Modelica Text View of the class
window.

Figure 2-3: The Modelica Text View button in the toolbar of the Model Center.

The textual representation of the model should look as follows.

Chapter 2: Hello World 7
model HelloWorld "A differential equation"
 ¤;
end HelloWorld;

The symbol ¤ in the second row contains hidden graphical information about the model and
is automatically updated whenever you edit the model in any of the graphical views of the
class window. Note that the description that we entered in the dialog box has been added
to the model. Now it is just a matter of adding the variable and the equation. We will do
that by editing the definition of the model directly in the Modelica Text View.

model HelloWorld "A differential equation"
 ¤;
 Real x(start=1);
equation
 der(x)=-x;
end HelloWorld;

Note that when we declare the variable we also set its initial value to 1 by specifying a val-
ue for its parameter start.

The HelloWorld model is now ready. Before simulating the model, we may want to ver-
ify its correctness by clicking the Validate Class button in the toolbar.

Figure 2-4: The Validate Class button in the toolbar of the Model Center.

This will generate a report in the Messages view, located below the class window.

Figure 2-5: The Messages view of the Model Center.

If everything was typed in correctly, you should find a report similar to the one in Figure 2-
5.

8 Chapter 2: Hello World
To perform the simulation of the model, we need to start Simulation Center, the simulation
environment of SystemModeler. Click the Simulation Center button in the toolbar.

Figure 2-6: The Simulation Center button in the toolbar of the Model Center.

Simulation Center will start, and the HelloWorld model will automatically be translated
into an executable. An experiment is created for the HelloWorld model in the Experi-
ment Browser of Simulation Center.

Figure 2-7: The Settings view of the HelloWorld experiment in Simulation Center.

In the Experiment Browser you can specify simulation settings, parameter values, and
initial values for variables, but we will leave it as is for now. Instead we will click the Sim-
ulate button to start the simulation.

Figure 2-8: The Simulate button in the toolbar of Simulation Center.

After the simulation is completed, the Plot view of the Experiment Browser becomes vis-
ible. Click the checkbox in front of the variable x to plot the result.

Chapter 2: Hello World 9
Figure 2-9: Plotting the variable x of the HelloWorld model in Simulation Center.

We will now return to the Model Center in order to create an icon for the model. Switch to
the icon view of the class window by clicking the Icon View button in the toolbar.

Figure 2-10: The Icon View button in the toolbar of the Model Center.

To create an icon, we will use the drawing tools available in the toolbar of the Model Cen-
ter.

Figure 2-11: The drawing tools in the toolbar of the Model Center.

By choosing the rectangle tool, it is possible to draw rectangles. Draw a rectangle covering
the white area of the icon view. Double-click the rectangle to view and edit the properties
of the rectangle.

10 Chapter 2: Hello World
Figure 2-12: Editing the properties of a rectangle.

Change the fill color to Gray, select Solid as the fill pattern and click the OK button. Next,
press the Esc key to clear the selection in the icon view. Finally, choose the Text Tool and
draw a text item covering the entire rectangle, and change the text to "Hello World" in the
Text Properties dialog box. The reason why it was necessary to clear the selection before
drawing the text item deserves an explanation. Without clearing the selection, we would
have ended up moving the rectangle instead of adding a text item, as all drawing tools can
also be used to move selected items.

The icon of the model should now look similar to the one below.

Figure 2-13: The icon of the HelloWorld model.

Chapter 2: Hello World 11
The HelloWorld model will from now on be represented by this icon everywhere it is
used.

2.1.1 Exercise

Change the model equation, for instance by adding a parameter and trying out the result.

12 Chapter 2: Hello World

Chapter 3: Multidomain—A Servo Mechanism 13
Chapter 3: Multidomain—A Servo
Mechanism

This example shows how to develop a servo mechanism model step by step in SystemMod-
eler. It illustrates the multi-engineering capabilities and shows how you can use Simulation
Center to analyze models created in Model Center, synthesize controllers, and carry out
comparison studies.

3.1 DC Motor

A simple dynamic model of a controlled DC motor consists of a variable voltage source, a
resistor, an inductor, and an electromotoric force element representing the coupling be-
tween electric energy and mechanical energy provided by the magnetic field in the DC mo-
tor. The motor axis is represented by a rotating mass or inertia.

All of these components can be found in the Modelica Standard Library, included with Sys-
temModeler. With the help of drag-and-drop, they can be used to compose the model as
illustrated in the figure below.

Figure 3-1: The Diagram View of a DC motor in the Model Center.

14 Chapter 3: Multidomain—A Servo Mechanism
To build this model, we need to create a new model, find the appropriate components, drag
and drop the components into the diagram area, and finally connect the components using
the Connection Line Tool.

We begin by creating a new model with the name DCMotor. The components that we will
use are all available in the Modelica Standard Library. To locate the components, we can
either search for them, or if we know their exact location, open the package that contains
them in the Class Browser. We will show how to do both.

To locate the Step source component, we will use the Class Browser to search for it. Type
"step" (without the quotation marks) in the text box of the Class Browser and press the
Enter key or click the Find button to the right of the text box.

Figure 3-2: Searching for a step source component using the Class Browser in the Model Center.

If everything went well, you should have at least 24 matches for "step" in the Class Brows-
er. The component we want to use is the Modelica.Blocks.Sources.Step compo-
nent, highlighted in the figure above.

To add this component to our DCMotor model, drag it from the Class Browser and drop
it on the Diagram View of the class window.

Chapter 3: Multidomain—A Servo Mechanism 15
The signal voltage component is located in the Modelica.Electrical.Ana-
log.Sources package. As we know the exact location of the component, we will use the
tree view of the Class Browser and expand the branches of the tree all the way down to
the branch that represents the package Sources, in which the component is located.

Start by expanding the Modelica package. This is done by clicking the symbol to the left
of the package icon and name.

Figure 3-3: Expanding the Modelica package in the Class Browser.

As you can see, the Modelica package contains several packages. We will continue by
expanding the Electrical package, followed by the Analog package, and finally the
Sources package, in which we will find the signal voltage component.

16 Chapter 3: Multidomain—A Servo Mechanism
Figure 3-4: Expanding the Modelica.Electrical.Analog.Sources package.

Add the SignalVoltage component to the DCMotor, by dragging it to the Diagram
View of the class window.

We have now added two of the seven components. The remaining four electrical compo-
nents (Resistor, Inductor, Ground, and EMF) can all be found in the Modeli-
ca.Electrical.Analog.Basic package. As we already have the Modelica.Elec-
trical.Analog package expanded, we can easily locate the Basic package and expand
it in order to find the resistor, ground, inductor, and EMF components.

Chapter 3: Multidomain—A Servo Mechanism 17
Figure 3-5: Expanding the Modelica.Electrical.Analog.Basic package.

When you have added the electrical components to the DCMotor model, there is only one
component left to add, the inertia. It is located in the Modelica.Mechanics.Rota-
tional.Components package. You can choose if you want to search for it or browse to
it directly by expanding the Modelica, Mechanic, Rotational, and Components
packages.

Once you have added the inertia component, all that remains to complete the model of the
DC motor is to connect the components. Components are connected using the Connection
Line Tool.

Figure 3-6: The Connection Line Tool in the toolbar of the Model Center.

18 Chapter 3: Multidomain—A Servo Mechanism
For instance, to connect the ground to the negative pin of the signal voltage component,
place the mouse cursor above the ground pin, press the left mouse button and hold it down
while moving the mouse cursor to the negative pin of the signal voltage component. To
make the connection, release the mouse button.

Continue connecting all the components until the Diagram View of the DCMotor resem-
bles the picture in Figure 3-1.

While dropping and connecting the components, Model Center generates the Modelica
code corresponding to the actions. Switch to the Modelica Text View to view the textual
representation of the model. In the textual representation of the model, each component is
declared, and each connection between two components is represented by connect equa-
tions in the equation section.

model DCMotor
 Modelica.Blocks.Sources.Step step;
 Modelica.Electrical.Analog.Sources.SignalVoltage
signalVoltage1;
 Modelica.Electrical.Analog.Basic.Resistor resistor1;
 Modelica.Electrical.Analog.Basic.Inductor inductor1;
 Modelica.Electrical.Analog.Basic.EMF EMF1;
 Modelica.Mechanics.Rotational.Components.Inertia inertia1;
 Modelica.Electrical.Analog.Basic.Ground ground1;

equation
 connect(EMF1.flange,inertia1.flange_a);
 connect(EMF1.n,signalVoltage1.n);
 connect(signalVoltage1.n,ground1.p);
 connect(inductor1.n,EMF1.p);
 connect(resistor1.n,inductor1.p);
 connect(signalVoltage1.p,resistor1.p);
 connect(step1.y,signalVoltage1.v);
end DCMotor;

The order of the declarations and equations depends on in which order you dropped the
components and made the connections. Therefore, the order of the declarations and equa-
tions may be slightly different in your model. Also, for readability, all graphical annota-
tions have been removed from the definition of the DCMotor above.

Chapter 3: Multidomain—A Servo Mechanism 19
The DCMotor model is now complete and possible to simulate. Click the Simulation Cen-
ter button to start Simulation Center. In Simulation Center, set the simulation time to 25
seconds by editing the Stop time in the Settings view of the DCMotor experiment.

Figure 3-7: Setting the simulation time to 25 seconds for the DCMotor model.

Start the simulation and, when completed, select the variables to plot in the Experiment
Browser as illustrated in the figure below.

Figure 3-8: Plotting inertia1.w and signalVoltage1.v for the DCMotor model with
default parameter values.

Finally, we get the result, with the plot of inertia.w and signalVoltage1.v versus
time.

20 Chapter 3: Multidomain—A Servo Mechanism
It is also easy to change parameter values in order to modify the system behavior. We will
change the resistance of the resistor, the inductance of the inductor, and the moment of the
inertia in order to yield a damped step response instead of an oscillative step response.

Switch to the Parameters view in the Experiment Browser. To edit a parameter value in
the Parameters view, double-click the current value. Set the resistance of resistor1 to
10 ohm, the inductance of inductor1 to 0.1 H, and the moment of inertia1 to 0.3
kgm2.

Simulate the model again and study the updated plot of the angular velocity of the inertia.

Figure 3-9: Plotting inertia1.w and signalVoltage1.v for the DCMotor model with
customized parameter values.

3.2 Stiff and Weak Axis

In this section we will begin by developing a stiff axis model, study its step response by
adding a step torque as illustrated below, and show how the axis can be more accurately
modeled by including an additional weakness to the stiff axis model.

We begin by developing the stiff axis model. The components (Step, Torque, Inertia,
and IdealGear) of the model can all be found by expanding the Modeli-

Chapter 3: Multidomain—A Servo Mechanism 21
ca.Blocks.Sources, Modelica.Rotational.Sources and Modelica.Mechan-
ics.Rotational.Components packages in the Class Browser, or by simply searching
for them. You can give the model any name you want. The different stages of the model
are also available in the IntroductoryExamples.MultiDomain package. Note how-
ever that all models in IntroductoryExamples are read-only models and cannot be
modified, so there is a point in developing the models yourself if you want to be able to do
everything that is involved in the steps of this example.

Figure 3-10: The Diagram View of the
IntroductoryExamples.MultiDomain.StiffAxis model.

By selecting the idealGear1 component, we are able to edit the parameters of the com-
ponent in the Parameters view, located at the bottom part of the editor.

Figure 3-11: Editing the transmission ratio of an ideal gear component in the Model Center.

Give the gear ratio parameter a value of 3. This means that angles and angular velocity are
amplified three times and the torque is attenuated by a factor of three from one side of the
gear to the other. Also, change the start time of the step source by changing the value of the
parameter startTime to 1 second. The text in the idealGear1 icon in the Diagram
View should change from "ratio = ratio" to "ratio = 3".

After simulating the system for 6 seconds, we observe that a constant torque results in a
constant angular acceleration, i.e. a ramp in angular velocity and a square curve for the an-
gle of the axis, as seen below.

22 Chapter 3: Multidomain—A Servo Mechanism
Figure 3-12: Plotting the torque, the angle of inertia2, and the angular velocity of inertia2
for the IntroductoryExamples.MultiDomain.StiffAxis model.

By including an additional weakness, the axis can be more accurately modeled. This is pos-
sible by substituting the above axis model with a model consisting of two rotating masses
connected by a torsion spring, according to the figure below. The torsion spring is found
in the Modelica.Mechanics.Rotational.Components package.

Figure 3-13: The Diagram View of the
IntroductoryExamples.MultiDomain.WeakAxis model.

Notice that inertia1 and inertia2 have been given a moment of 0.5 kgm2, and the
spring constant of spring1 is set to 5 Nm/rad. We simulate this subsystem for 6 seconds
and then study the result. A comparison with the stiff axis model shows that we have sim-
ilar behavior but with an added deflection. Note that inertia3, and not inertia2 as ear-
lier, is the last element of the axis. Therefore, we plot the rotational velocity and angle for
inertia3 in order to do a fair comparison.

Chapter 3: Multidomain—A Servo Mechanism 23
Figure 3-14: Plotting the torque, the angle of inertia3, and the angular velocity of inertia3
for the IntroductoryExamples.MultiDomain.WeakAxis model.

3.2.1 Exercise

Make a simple DC motor with a torsional spring to the outgoing shaft and another inertia
element. Simulate and study the results. Adjust some parameters and compare results. You
may also want to add an input torque and connect it to inertia2, then study the system.

3.3 Control System

We end this chapter by developing a stiff and weak servo mechanism, using the DC motor
model and axis models developed earlier in this chapter.

The structure of the control system is shown in the schematic picture below. This system
consists of an input signal, a sensor, a feedback loop, and a regulator. The physical system
consists of the DC motor and one of the axis systems. Since the physical system has nega-
tive static gain, the PI gain must also be negative.

24 Chapter 3: Multidomain—A Servo Mechanism
Figure 3-15: Simplified representation of a control system.

We connect all three subsystems as seen in the figure above. The default choices of regu-
lator parameters are k = 1 and T = 1, where the PI regulator transfer function is:

We begin by developing a control system for the DC motor and the stiff axis developed
earlier. As seen in the figure below, three new components are introduced: a feedback com-
ponent, a PI controller, and a speed sensor.

Figure 3-16: The Diagram View of the
IntroductoryExamples.MultiDomain.StiffServoMechanism model.

These components can be found in the following packages:

• The PI controller is found in the Modelica.Blocks.Continuous package.
• The feedback component is found in the Modelica.Blocks.Math package.
• The speed sensor is found in Modelica.Mechanics.Rotational.Sensors.

GPI kTs 1
Ts
------+=

Chapter 3: Multidomain—A Servo Mechanism 25
When simulating this model, we will pay attention to the response for the angular velocity
of both the motor axis and the gear axis shown in the figure below. The model was simu-
lated for 25 seconds.

Figure 3-17: Plotting the angular velocity of inertia1 and inertia2 for the
IntroductoryExamples.MultiDomain.StiffServoMechanism model.

Until now we have used default parameters for the controller. By varying the controller
gain k we can control the response. In this case we vary the gain from 1 to 2 by intervals of
0.25. We can compare the results of all the simulations by creating a new experiment for
each simulation and then plotting the results in the same window. New experiments are cre-
ated by choosing New from the File menu in Simulation Center. Set the appropriate param-
eter values for each experiment, simulate, and plot the results.

26 Chapter 3: Multidomain—A Servo Mechanism
Figure 3-18: Plotting the angular velocity of inertia1 and inertia2 for the
IntroductoryExamples.MultiDomain.StiffServoMechanism model with
different controller gain.

By studying the angular velocity response for the motor and gear axes using different reg-
ulator gains, we conclude that by choosing k = 1.5 we get a sufficiently fast response with
few oscillations.

Finally, we develop a control system for the DC motor and the weak axis system.

Chapter 3: Multidomain—A Servo Mechanism 27
Figure 3-19: The Diagram View of the
IntroductoryExamples.MultiDomain.WeakServoMechanism model.

Before simulating, we set the controller gain to k = 1.5 and compare the results with the
results of the stiff axis system.

Figure 3-20: Comparison between the inertias of the StiffServoMechanism model and the
WeakServoMechanism model with a regulator gain of k = 1.5.

28 Chapter 3: Multidomain—A Servo Mechanism
As seen above, the controller design made using the stiff axis model also performs well for
the more accurate weak axis.

3.4 Sensitivity Analysis

In this section we will study how sensitive our control design is to changes of different sys-
tem parameters. This is done using the CVODES solver that supports forward sensitivity
analysis. The sensitivity si(t) for a state yi(t) with respect to the parameter p is given by:

In other words, at each time instance the sensitivity represents how much the solution for
the state yi(t) would change for a small change of parameter p.

Let us study the sensitivity of our control design with respect to the three inertias. To do
so, we select the CVODES solver in the experiment settings and check the SA checkboxes
in the Parameters view for inertia1.J, inertia2.J and inertia3.J.

Figure 3-21: Selecting the CVODES solver and selecting inertia1.J, inertia2.J and
inertia3.J for sensitivity analysis.

si t()
∂yi t()
∂p

--------------=

Chapter 3: Multidomain—A Servo Mechanism 29
When the simulation has finished, we can find the result of the sensitivity analysis in the
Plot view as an expandable tree below each state. Figure 3-22 shows the sensitivities for
inertia3.w with respect to inertia1.J, inertia2.J, and inertia3.J. There we
can see that inertia1.J has a minor impact on the solution of inertia3.w in the be-
ginning of the simulation. This impact diminishes toward the end of the simulation. Fur-
thermore, inertia2.J has a negligible impact on the solution during the whole simula-
tion. The inertia inertia3.J, on the other hand, has a significantly larger impact on the
solution. From this we can conclude that our control design is most sensitive to changes of
inertia3.J.

Figure 3-22: The sensitivity of inertia3.w with respect to inertia1.J, inertia2.J, and
inertia3.J.

To verify our results, we perform the following simulations:

• WeakServoMechanism 1: the original settings.
• WeakServoMechanism 2: inertia1.J increased by 50%.
• WeakServoMechanism 3: inertia2.J increased by 50%.
• WeakServoMechanism 4: inertia3.J increased by 50%.

The result is shown in Figure 3-23, where we confirm our analysis:
• WeakServoMechanism 2: changing inertia1.J has some impact in the beginning of

the simulation, but it diminishes towards the end.

30 Chapter 3: Multidomain—A Servo Mechanism
• WeakServoMechanism 3: changing inertia2.J has almost no impact at all.
• WeakServoMechanism 4: changing inertia3.J has the most impact; it leads to a

phase shift of the oscillations as well as increased amplitude.

Figure 3-23: The result of changing inertia1.J, inertia2.J, or inertia3.J.

Chapter 4: Component-Based—Simple Circuit 31
Chapter 4: Component-Based—Simple
Circuit

Block-based modeling is well suited for problems that have a well-defined causality, i.e.
direction of flow. An example of this type of signal-based system is a control system. How-
ever, in most cases the causality is not predefined; for instance, a motor could also be used
as a generator, depending on whether or not the input signal is the current or torque. An-
other basic example is the AC circuit below.

Figure 4-1: The draft schematics of an AC circuit model.

In this example, the circuit above will be used to illustrate the difference between a block-
based approach and a component-based approach to modeling.

4.1 Block-Based Circuit

We begin by creating a block-based model. Before we actually start implementing the
model, we have to:

• Decide on input and output signals for the system.

32 Chapter 4: Component-Based—Simple Circuit
• Set up the system of equations.
• Derive the output as a function of the input.

In this example, we want to study the current through the signal voltage as a function of the
voltage. To calculate this we have three equations:

In these equations i is the total current through the signal voltage, and i1 and i2 are the cur-
rents running through resistor1 and resistor2 respectively. Rewrite the above equa-
tions to not contain derivatives:

With these equations we can now implement the block-based model, as shown below.

Figure 4-2: The Diagram View of the
IntroductoryExamples.ComponentBased.BlockCircuit model.

u t() R1i1 t() 1
C
---- i1 t() td∫+=

u t() R2i2 t() L
di2 t()

dt
--------------+=

i t() i1 t()– i2 t()–=

i1 t() 1
R1
------ u t() 1

C
---- i1 t() td∫–⎝ ⎠

⎛ ⎞=

i2 t()
u t() R2i2 t()–

L
--------------------------------- td∫=

Chapter 4: Component-Based—Simple Circuit 33
Create a new model and locate the components in the Class Browser. All components re-
quired to implement the system with a block-based approach can be found in the following
packages:

• Modelica.Blocks.Sources

• Modelica.Blocks.Math

• Modelica.Blocks.Continous

To view the components in the Modelica.Blocks.Sources package in the Class
Browser, expand the Modelica package, followed by Blocks and Sources, by clicking
the symbol to the left of each package icon and name.

Figure 4-3: Expanding the Continuous, Math, and Sources packages within
Modelica.Blocks.

Place the components in the Diagram View of your model by dragging them from the
Class Browser and dropping them in the view. Complete the model by connecting the
components.

34 Chapter 4: Component-Based—Simple Circuit
Switch to Simulation Center and simulate the model for 10 seconds. The output current is
the result of add2. The signals i1 and i2 are from gain3 and integrator1 respectively.
The picture below shows the resulting current.

Figure 4-4: Plotting add2.y for the
IntroductoryExamples.ComponentBased.BlockCircuit model with default
parameters values.

4.2 Component-Based Circuit

Naturally, implementing a component-based model of the system shown in Figure 4-1 re-
quires only drag-and-drop as well as connecting the components and setting parameters.
This leaves us with a model that looks just like the drawing with which we started.

Chapter 4: Component-Based—Simple Circuit 35
Figure 4-5: The Diagram View of the
IntroductoryExamples.ComponentBased.ElectricCircuit model.

If you would like to build the model yourself, the sine voltage component is located in the
Modelica.Electrical.Analog.Sources package, and the rest of the components in
the Modelica.Electrical.Analog.Basic package. Note that some of the parameter
values differ from the default, so in order to obtain the same simulation results you will
have to change these as well.

Now we can simulate and plot the resulting current through the signal voltage, and as ex-
pected it looks just like the result plotted from the block model.

36 Chapter 4: Component-Based—Simple Circuit
Figure 4-6: Plotting the current going through the source, for the
IntroductoryExamples.ComponentBased.ElectricCircuit model with default
parameters values.

Chapter 4: Component-Based—Simple Circuit 37
We will end this chapter by adding a second capacitor to the model as shown below. The
capacitor component is located in the Modelica.Electrical.Analog package.

Figure 4-7: The Diagram View of the
IntroductoryExamples.ComponentBased.ElectricCircuit2 model.

After simulation, we compare the resulting currents with one another.

38 Chapter 4: Component-Based—Simple Circuit
Figure 4-8: Comparison between the two currents going through the source in the
ElectricCircuit and ElectricCircuit2 models.

4.2.1 Exercise

Develop a block-based model for the second circuit.

Chapter 5: Custom Component—Chain Pendulum 39
Chapter 5: Custom Component—Chain
Pendulum

This chapter illustrates how to create and reuse a custom component. A chain pendulum
can be seen as a concatenation of chain links, where each chain link consists of a body ro-
tating around one end. We will show how to create a chain link component that will be re-
used in the chain pendulum model.

5.1 Chain Link Component

The components needed to build the chain link are available in the Modelica Standard Li-
brary included in SystemModeler. The chain link is inspired by the pendulum example in
the Modelica.Mechanics.MultiBody library and consists of a body rotating around a
revolute joint. To add friction to the rotation, a damper is connected to the revolute joint.

To build the model of a chain link, we need to create a new model, find the appropriate
components, drag and drop the components into the diagram area, and connect the compo-
nents using the Connection Line Tool. These first steps are explained in detail in Section
3.1. Furthermore, for the model to be used as a component, it also needs connector inter-
faces to permit connection to other components. We will show how the connector interfac-
es are easily added with the Connection Line Tool. Parameters are also added to the com-
ponent to make it more flexible.

We begin by creating a new model that we call ChainLink. The components needed are
a revolute joint Revolute located in Modelica.Mechanics.MultiBody.Joints, a
body BodyBox located in Modelica.Mechanics.MultiBody.Parts, and a rotational
damper Damper located in Modelica.Mechanics.Rotational.Components. Ac-
cessing the components in the Class Browser is explained more in detail in Section 3.1.

To add a component to the ChainLink model, drag it from the Class Browser and drop
it on the Diagram View of the class window. The model is depicted in Figure 5-1.

40 Chapter 5: Custom Component—Chain Pendulum
Figure 5-1: Diagram View of ChainLink model.

Once you have added the three components, you need to connect them with each other.
Components are connected using the Connection Line Tool.

Figure 5-2: The Connection Line Tool in the toolbar of the Model Center.

Only connectors with similar properties can be linked to each other. This rule is supported
by the Connection Line Tool. If the user tries to connect two incompatible connectors, the
connection line will be disabled, as seen in Figure 5-3.

Figure 5-3: Example when the connection line is disabled between two incompatible connectors.

The MultiBody connectors are called "frames" and represent coordinate systems. Since we
want the body to rotate around one end, we choose to connect frame_a of bodyBox1 to
frame_b of the revolute joint. The damper is connected to the revolute joint by using the
one-dimensional mechanical systems connectors, called "flanges".

For instance, to connect frame_a (gray connector) of bodyBox1 to frame_b (white con-
nector) of the revolute joint component, place the mouse cursor above frame_a of
bodyBox1, press the left mouse button, and hold it down while moving the mouse cursor

Chapter 5: Custom Component—Chain Pendulum 41
to frame_b of the revolute joint component. To make the connection, release the mouse
button.

The two flanges of the damper, which are connectors for one-dimensional mechanical sys-
tems, are connected to the flanges of the revolute joint in the same manner.

Since we want to use this model as a component, we need to add compatible connectors so
the model can be linked to other components. With the Connection Line Tool, this task is
simple. Place the mouse cursor above frame_b of bodyBox1, press the left mouse button,
and hold it down while moving the cursor to the desired position of the new connector. To
create the connection, right-click on the mouse button and choose Create Connector. A
compatible connector is created. A connector to frame_a of the revolute joint is created
using the same method.

Figure 5-4: Adding a component connector with the Connection Line Tool.

We now would like to add parameters to the component to make it more flexible. This will
be done in the text view. While dropping and connecting the components, the model editor
generates the Modelica code corresponding to the actions. Switch to the Modelica Text
View to view the textual representation of the model. In the textual representation of the
model, each component is declared, and each connection between two components is rep-
resented by connect equations in the equation section.

In the textual view, we declare dimension vector r of bodyBox1 (length, width, height)
and the damping coefficient d as parameters.

model ChainLink
 Modelica.Mechanics.MultiBody.Joints.Revolute
revolute1(useAxisFlange=true);
 Modelica.Mechanics.MultiBody.Parts.BodyBox bodyBox1(r=r);
 Modelica.Mechanics.Rotational.Components.Damper
damper1(d=d);
 Modelica.Mechanics.MultiBody.Interfaces.Frame_a frame_a1;
 Modelica.Mechanics.MultiBody.Interfaces.Frame_b frame_b1;
 parameter Real r[3]={1,0.1,0.1};
 parameter Real d=1.0;

equation

42 Chapter 5: Custom Component—Chain Pendulum
 connect(bodyBox1.frame_b,frame_b1);
 connect(revolute1.frame_b,bodyBox1.frame_a);
 connect(revolute1.frame_a,frame_a1);
 connect(damper1.flange_b,revolute1.axis);
 connect(damper1.flange_a,revolute1.support);
end ChainLink;

We now create an icon for the component. Switch to the Icon View and draw the compo-
nent icon with the help of the Graphic Tools toolbar.

Figure 5-5: The Graphic Tools toolbar.

Note that the connectors were automatically added in the icon window when created with
the Connection Line Tool.

We describe the chain link with an ellipse. To change the ellipse properties, double-click
the ellipse object or select it with the mouse and press Return.

We use the Text Tool to display the name of the component by adding a text item with text
"%name". To add any parameter display, the user should type "%" followed by the param-
eter name. We display the components parameters r and d by adding two text boxes with
the text "%r" and "%d".

Figure 5-6: Icon View of the chain link component.

Chapter 5: Custom Component—Chain Pendulum 43
5.2 Chain Pendulum Model

Once we have the chain link component, the chain pendulum model is represented with a
concatenation of four chain links connected to each other and to the initial frame. The Di-
agram View of the chain pendulum model is represented in Figure 5-7.

Figure 5-7: Diagram View of the chain pendulum model.

Switch to Simulation Center and simulate the model for 10 seconds. The pendulum anima-
tion can be visualized after simulation by clicking the Animation button in the toolbar.

Figure 5-8: Animation is viewed by clicking the Animation button in the toolbar.

Figure 5-9 displays the animation of the pendulum at time 4.77 seconds.

Figure 5-9: View of the chain pendulum animation at time 4.77 seconds.

The position of the end of the pendulum in the x and y directions is displayed in Figure 5-
10.

44 Chapter 5: Custom Component—Chain Pendulum
Figure 5-10: Plotting the horizontal and vertical position of the end of the pendulum.

5.2.1 Exercise

The interested reader can create a more general chain pendulum component with the num-
ber of chain links as a parameter.

Hint: you can use a for loop to connect the chain links.

Chapter 6: External Function—Chirp Signal 45
Chapter 6: External Function—Chirp
Signal

While it is easy to write Modelica functions, it is sometimes convenient to call a subroutine
written in C or FORTAN. This example shows how to use an external function written in C.

6.1 Chirp Function

A chirp signal is a sinusoid with a frequency that changes continuously over:

• a certain band:

• a certain time period:

We will use the following signal:

The instantaneous frequency in this signal is obtained by differentiating the argument with
respect to time t:

We see that the instantaneous frequency increases from the lower bound of the frequency
band to the higher. When applying the signal to a system, it gives good control over the
excited frequency band and is therefore often used for system identification. In this exam-

Ω:ω1 ω ω2≤ ≤

0 t M≤ ≤

u t() A ω1t ω2 ω1–() t2

2M
--------+⎝ ⎠

⎛ ⎞cos=

ωi ω1
t

M
----- ω2 ω1–()+=

46 Chapter 6: External Function—Chirp Signal
ple, we will define the chirp function in C and then use it as an external function in Mod-
elica.

6.2 Modeling

We begin by creating a Modelica function called Chirp that will make an external call to
a C function with the same name (for details on how to create models, see any of the pre-
vious examples).

function Chirp
 input Modelica.SIunits.AngularVelocity w_start;
 input Modelica.SIunits.AngularVelocity w_end;
 input Real A;
 input Real M;
 input Real t;
 output Real u "output signal";
 external "C" annotation(Include="#include \"Chirp.c\"");
end Chirp;

The function has five input signals, one output signal, and a call to the external function
Chirp.c. The declaration assumes that the function Chirp.c is declared with these five
inputs and returns a double. If, for some reason, you wish to switch the order of the vari-
ables in calling the function, this is possible by changing the declaration to, for instance,
the following.

external "C" Chirp(t,A,M,w_start,w_end)
annotation(Include="#include \"Chirp.c\"");

However, in this case we define a function that uses the same variables in the same order.

double Chirp(double w1, double w2, double A, double M, double
time)
{
 double res;
 res=A*cos(w1*time+(w2-w1)*time*time/(2*M));
 return res;
}

The function can be written in any text editor and stored with the name Chirp.c. In this
case, the C function should be stored in the same library as the Modelica function. It can
be placed in other places too, but the annotation should then be changed accordingly. For
instance, you can place the function directly in the root of C.

Chapter 6: External Function—Chirp Signal 47
external "C" annotation(Include="#include \"c:\\Chirp.c\"");

As soon as the C function is saved, the Modelica function is ready to use. To do this, we
define a Modelica block and call the Chirp function within it.

block ChirpSignal
 Modelica.Blocks.Interfaces.RealOutput u;
 parameter Modelica.SIunits.AngularVelocity w_start=0;
 parameter Modelica.SIunits.AngularVelocity w_end=10;
 parameter Real A=1;
 parameter Real M=10;
equation
 u=Chirp(w_start, w_end, A, M, time);
end ChirpSignal;

Note that we have set default parameters so that the signal will increase from 0 to 10 rad/s
in 10 seconds, as shown by this simulation result.

Figure 6-1: Plotting the chirp signal u of the
IntroductoryExamples.ExternalFunctions.ChirpSignal model.

The attentive reader will note that the variable u was declared as the predefined Modelica
connector Modelica.Blocks.Interfaces.RealOutput, which is used in most block
models in the Modelica Blocks library. As a result, ChirpSignal can be used in other
models as an input source. For instance, we can use it to test the resonance frequency of
the following electric circuit.

48 Chapter 6: External Function—Chirp Signal
Figure 6-2: The Diagram View of the
IntroductoryExamples.ExternalFunctions.SeriesCircuit model.

Note that the default parameters of the electrical components have been changed according
to the figure above. We have also changed the parameters of the chirp to sweep from 0 to
1000 rad/s.

Next we simulate and study the current.

Figure 6-3: Plotting the current i of the
IntroductoryExamples.ExternalFunctions.SeriesCircuit model.

Chapter 6: External Function—Chirp Signal 49
As seen, we get a top in the curve at around 5 seconds, which corresponds to:

This can also be verified by calculating the resonant frequency for the circuit analytically
as follows:

Of course, for more complicated systems it might be difficult to calculate the resonant fre-
quency analytically, and in these cases a chirp signal can be very useful.

6.2.1 Exercise

The chirp signal can easily be implemented as one single Modelica block without using an
external function. This is left to the interested reader as an exercise.

ωi ω1
t

M
----- ω2 ω1–()+ 0 5

10
------ 1000 0–()+ 500 rad/s= = =

ω0
1
LC

----------- 1
0.02*0.002

------------------------------- 500 rad/s= = =

50 Chapter 6: External Function—Chirp Signal

Chapter 7: Hierarchical Model—Tank System 51
Chapter 7: Hierarchical Model—Tank
System

This example illustrates how you can build a hierarchical model using SystemModeler, as
well as make new libraries. A flat tank model is first developed, followed by a similar com-
ponent-based tank model. We then see the flexibility that this gives us to test new scenar-
ios.

7.1 Flat Tank

The system we will begin with is a one-tank system with a controller, as illustrated in the
picture below.

Figure 7-1: A graphical representation of a tank system.

To implement the model, we need to set up the system equations. The water level h in the
tank is a function of the flow in and out of the tank and the tank area:

In this example we choose an input flow that is constant the first 150 seconds, after which
it triples:

h·
qin qout–

A
----------------------=

52 Chapter 7: Hierarchical Model—Tank System
where flowLevel is a parameter. By controlling the output flow, we will try to keep the tank
level at a desired reference value ref. In order to do this we implement a PI controller:

where K is the controller gain and T is the time constant of the controller. Finally, we limit
the output flow to a minimum value minV and a maximum value maxV. With this informa-
tion, we can implement the flat Modelica code.

model FlatTank
 parameter Real flowLevel(unit="m3/s")=0.02;
 parameter Real area(unit="m2")=1;
 parameter Real flowGain(unit="m2/s")=0.05;
 parameter Real K=2 "Gain";
 parameter Real T(unit="s")=10 "Time constant";
 parameter Real minV=0,maxV=10;
 parameter Real ref=0.25 "Reference level for control";
 Real h(start=0,unit="m") "Tank level";
 Real qInflow(unit="m3/s") "Flow through input valve";
 Real qOutflow(unit="m3/s") "Flow through output valve";
 Real error "Deviation from reference level";
 Real outCtr "Control signal without limiter";
 Real x "State variable for controller";
equation
 assert(minV >= 0, "minV must be greater or equal to zero");
 der(h)=(qInflow - qOutflow)/area;
 qInflow=if time > 150 then 3*flowLevel else flowLevel;
 qOutflow=Functions.LimitValue(minV, maxV, -flowGain*outCtr);
 error=ref - h;
 der(x)=error/T;
 outCtr=K*(error + x);
end FlatTank;

function LimitValue
 input Real pMin;

qin
flowLevel t 150s<,

3 flowLevel() t 150s≥,⎩
⎨
⎧

=

qout K error t() 1
T
--- error s() sd

0

t

∫+
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

Chapter 7: Hierarchical Model—Tank System 53
 input Real pMax;
 input Real p;
 output Real pLim;
algorithm
 pLim:=if p > pMax then pMax else if p < pMin then pMin else p;
end LimitValue;

By simulating the model for 250 seconds, we can see that the tank level starts to increase,
reaching and then surpassing the desired reference level. Once the desired level is sur-
passed, the outflow is opened, and after 150 seconds the level is stabilized. However, at
this moment the input flow is suddenly increased, thus increasing the water level before the
controller manages to stabilize it again. This is illustrated in the figure below.

Figure 7-2: Plotting the tank level and the flows in and out of the flat tank with default parameters
values.

7.2 Component-Based Tank

Implementing a component-based tank will require a bit more work to begin with, but as
soon as we start experimenting with the tank and testing different scenarios we will regain
the invested time.

When using the object-oriented component-based approach to modeling, we first try to un-
derstand the system structure and decomposition in a hierarchical top-down manner. Once
the system components and interactions between these components have been roughly

54 Chapter 7: Hierarchical Model—Tank System
identified, we can apply the first traditional modeling phases of identifying variables and
equations to each of these model components.

By studying Figure 7-1 we see that the tank system has a natural component structure.

We can identify five components in the figure: the tank itself, the liquid source, the level
sensor, the valve, and the controller. However, since we will choose very simple represen-
tations of the level sensor and the valve, i.e. just a simple scalar variable for each, we let
these variables be simple variables of type Real in the tank model instead of creating two
new classes, each containing a single variable.

The next step is to determine the interactions and communication paths between the com-
ponents. It is fairly obvious that fluid flows from the source tank via a pipe. Fluid also
leaves the tank via an outlet controlled by the valve. The controller needs measurements of
the fluid level from the sensor. Thus, a communication path from the sensor of the tank and
the controller needs to be established.

In order to connect communication paths, connector instances must be created for those
components that are connected, and connector classes must be declared when needed. In
fact, the system model should be designed such that the only communication between a
component and the rest of the system is via connectors.

Finally, we should think about reuse and generalizations of certain components. For exam-
ple, do we expect that several variants of a component will be needed? In the case of the
tank system, we expect to plug in several variants of the controller, starting with a PI con-
troller. Thus, it is useful for us to create a base class for tank system controllers.

The structure of the tank system model developed using the object-oriented component-
based approach is clearly visible in Figure 7-3 below.

Figure 7-3: A graphical representation of an object-oriented component-based tank system.

We can identify three different types of classes that will be used in the model: interfaces,
functions, and components. Therefore, we develop a package containing three subpack-

Chapter 7: Hierarchical Model—Tank System 55
ages. To create a package, right-click on the User Classes root in the Class Browser and
select New Class, as shown in Figure 7-4. You can also right-click on the package you
want to add your package to and select New Class.

Figure 7-4: Menu to create a new class.

In the dialog box that opens, set the class restriction to Package and give the package the
name Hierarchical. Click the OK button to create the new package. The package will
appear in the User Classes tree of the Class Browser. By right-clicking the name of the
new package, we can create and add models and packages to it.

7.2.1 Interfaces

We are now ready to create the interfaces, called connectors. Begin by creating a new pack-
age Interfaces within the Hierarchical package. Unless already expanded, expand
the Hierarchical package in the Class Browser to view its contents. Create connector
classes within the Interfaces package by specifying Connector as the class restriction
in the New Class dialog box.

Create one connector class for reading the fluid level (see the HelloWorld example to see
how to edit models textually and make model icons).

connector ReadSignal "Reading fluid level"
 Real val(unit="m");
end ReadSignal;

Create a second connector class for the signal to the actuator for setting valve position.

connector ActSignal "Signal to actuator for setting valve
position"
 Real act;
end ActSignal;

Finally, create a connector class for the liquid flow at inlets and outlets.

connector LiquidFlow "Liquid flow at inlets or outlets"
 Real lflow(unit="m3/s");
end LiquidFlow;

56 Chapter 7: Hierarchical Model—Tank System
7.2.2 Tank Components

The next step is to create the three components of the system. Begin by creating a Compo-
nents package within the Hierarchical package. In the Components package, create
a tank model named Tank. The tank model has four interfaces (connectors in Modelica):
qIn for input flow, qOut for output flow, tSensor for providing fluid level measure-
ments, and tActuator for setting the position of the valve at the outlet of the tank. The
central equation regulating the behavior of the tank is the mass balance equation, which in
the current simple form assumes constant pressure. The output flows are related to the
valve position through the flowGain parameter and the LimitValue function. This func-
tion guarantees that the flow does not exceed what corresponds to the open/closed positions
of the valve.

model Tank;
 parameter Real area(unit="m2")=0.5;
 parameter Real flowGain(unit="m2/s")=0.05;
 parameter Real minV=0,maxV=10;
 Real h(start=0.0,unit="m") "Tank level";
 Hierarchical.Interfaces.ReadSignal tSensor "Connector, sensor
reading tank level (m)";
 Hierarchical.Interfaces.LiquidFlow qIn "Connector, flow (m3/s)
through input valve";
 Hierarchical.Interfaces.LiquidFlow qOut "Connector, flow (m3/
s) through output valve";
 Hierarchical.Interfaces.ActSignal tActuator "Connector,
actuator controlling input flow";

equation
assert(minV >= 0, "minV - minimum Valve level must be >= 0 ");
 der(h)=(qIn.lflow - qOut.lflow)/area;

equation
 qOut.lflow=Functions.LimitValue(minV, maxV, -
flowGain*tActuator.act);
 tSensor.val=h;
end Tank;

The model uses the already-defined connector as well as the LimitValue function, which
has not been defined yet. This is defined by creating the following function within a new
package, named Functions. As it is a function, we set its class restriction to Function
when creating it.

Chapter 7: Hierarchical Model—Tank System 57
function LimitValue;
 input Real pMin;
 input Real pMax;
 input Real p;
 output Real pLim;
algorithm
 pLim:=if p > pMax then pMax else if p < pMin then pMin else p;
end LimitValue;

The fluid entering the tank must originate somewhere. Therefore, we have a liquid source
component in the tank system Flow which increases sharply at t = 150 to three times the
previous flow level. This creates an interesting control problem that the tank controller
must handle. The following model is created in the Components package.

model LiquidSource;
 parameter Real flowLevel=0.02;
 Hierarchical.Interfaces.LiquidFlow qOut;

equation
 qOut.lflow=if time > 150 then 3*flowLevel else flowLevel;
end LiquidSource;

7.2.3 Controllers

Finally, the controllers need to be specified. We will initially choose a PI controller, but
later replace it with other kinds of controllers. The behavior of a PI (proportional and inte-
grating) controller is primarily defined by the following two equations:

Here x is the controller state variable, error is the difference between the reference level
and the actual level of liquid obtained from the sensor, T is the time constant of the con-
troller, outCtr is the control signal to the actuator for controlling the valve position, and K
is the gain factor. These two equations are placed in the controller class PIcontinuous-
Controller, which extends the BaseController class defined later.

model PIcontinuousController
 extends BaseController(K=2,T=10);
 Real x "State variable of continuous PI controller";

dx
dt
------ error

T
--------------=

outCtr K* error x+()=

58 Chapter 7: Hierarchical Model—Tank System
equation
 der(x)=error/T;
 outCtr=K*(error + x);
end PIcontinuousController;

Both the PI and PID controllers to be defined later inherit the partial controller class Base-
Controller, containing common parameters, state variables, and two connectors: one to
read the sensor and one to control the valve actuator.

partial model BaseController;
 parameter Real Ts(unit="s")=0.1 "Time period between discrete
samples";
 parameter Real K=2 "Gain";
 parameter Real T(unit="s")=10 "Time constant";
 parameter Real ref "Reference level";
 Real error "Deviation from reference level";
 Real outCtr "Output control signal";
 IntroductoryExamples.Hierarchical.Interfaces.ReadSignal cIn
"Input sensor level, connector";
IntroductoryExamples.Hierarchical.Interfaces.ActSignal cOut
"Control to actuator, connector";

equation
 error=ref - cIn.val;
 cOut.act=outCtr;
end BaseController;

Chapter 7: Hierarchical Model—Tank System 59
7.2.4 Small Tank System

When this is finished, we can compose our tank system model with drag-and-drop.

Figure 7-5: The Diagram View of the
IntroductoryExamples.Hierarachical.TankPI model.

Simulating for 250 seconds yields the same result as the flat tank system.

Figure 7-6: Plotting the tank level and the flows in and out of the PI-controlled tank with default
parameters values.

60 Chapter 7: Hierarchical Model—Tank System
7.3 Tank with Continuous PID Controller

We now define a TankPID system, which is the same as the TankPI system except that
the PI controller has been replaced by a PID controller. Here we see a clear advantage of
the object-oriented component-based approach over the traditional model-based approach,
since system components can easily be replaced and changed in a plug-and-play manner.

A PID (proportional, integrating, derivating) controller model can be derived in a similar
way as the PI controller. The basic equations for a PID controller are the following:

Using these equations and the BaseController class we create the PID controller.

model PIDcontinuousController
 extends BaseController(K=2,T=10);
 Real x "State variable of continuous PID controller";

equation
 der(x)=error/T;
 y=T*der(error);
 outCtr=K*(error + x + y);
end PIDcontinuousController;

dx
dt
------ error

T
--------------=

y Tderror
dt

-----------------=

outCtr K error x y+ +()=

Chapter 7: Hierarchical Model—Tank System 61
We can now compose a PID-controlled tank system using drag-and-drop.

Figure 7-7: The Diagram View of the
IntroductoryExamples.Hierarachical.TankPID model.

We simulate for 250 seconds again and compare with the previous result.

Figure 7-8: Comparison of tank levels between the TankPI model and the TankPID model.

62 Chapter 7: Hierarchical Model—Tank System
7.4 Three Tank System

Finally, thanks to the object-oriented component-based approach, we can compose a larger
system with ease.

Figure 7-9: The Diagram View of the
IntroductoryExamples.Hierarachical.TankSystem model.

Simulating this system, we can study how the level of each tank is controlled.

Figure 7-10: Evolution of the tank levels from the TankSystem model.

Note that the second tank has a reference level of 0.4 meters while the other tanks have a
reference level of 0.2 meters.

Chapter 8: System—Inverted Pendulum 63
Chapter 8: System—Inverted Pendulum

This chapter describes a complete system model of an inverted pendulum.

8.1 Inverted Pendulum

A classical engineering problem is to control an inverted pendulum. The pendulum system
consists of an electrical motor, a gear, and a pendulum connected to a cart. The position of
the cart is controlled using a controller with LQ (Linear Quadratic) design. The first prior-
ity of the controller is to make sure that the pendulum stays in an upright position.

Figure 8-1: Control signals for the pendulum.

64 Chapter 8: System—Inverted Pendulum
To be able to control the pendulum, the position of the cart x and the pendulum angle phi
are measured. The movement of the cart can be controlled via a force F, using the flange
input.

Simulate the system for 20 seconds and view the result in an animation window. The figure
below shows an animation at time 11.3 seconds, using the pulse reference signal (refer-
enceType=2).

Figure 8-2: Animation of the pendulum system.

The position of the cart can be changed by the referenceType parameter. With the time
table option (referenceType=3), you can create your own arbitrary signal. Change dif-
ferent parameters of the system, e.g. limit the maximum output signal from the controller
(controller.uMax) or the length of the pendulum (pendulum.l_pendulum), and see
what happens.

Chapter 9: Modelica Aspects and Modeling Advice 65
Chapter 9: Modelica Aspects and Modeling
Advice

This chapter explains some important aspects of the Modelica language and gives you ad-
vice on things to keep in mind when working with SystemModeler.

9.1 Initial Values

There are several ways to set initial values in a Modelica model. Here, the most common
ways are explained.

9.1.1 Start Attribute

Start values for state variables can be set either by using the start attribute or by including
equations in the initial equation/algorithm section. If a variable is a state variable1, a start
value is often needed in order to make sure that the variable has a suitable value at the start
of a simulation. The default start value is 0 for numerical (Integer and Real) variables,
false for Boolean variables, and the empty string "" for String variables.

While a state variable will always have the value of the start attribute at the start of a sim-
ulation, a variable that is not a state variable may not. For non-state variables, the start at-
tribute value is treated as a guess value. In the example below, x is a state variable (since
used in a der expression) and the start value is set to 1, hence the value of x will be 1 at
the start of the simulation.

model A
 Real x(start=1);

1. How the compiler chooses state variables depends on several factors, e.g. variables that
appear within the der operator are preferred. To control the selection of states, the
stateSelect and fixed attributes for variables may be used.

66 Chapter 9: Modelica Aspects and Modeling Advice
equation
 der(x) = -x + 1;
end A;

Guess Values

The start attribute can also be used to help the solver in finding the correct value for a non-
state variable. The equation z^2=6-z has two solutions, 2 and -3 respectively. To help the
solver find the desired solution, a start (guess) value may be given for z. This value should
be chosen to be as close as possible to the real solution. For example, if a start value of 4
is used for z, the solution will be z=2. If a start value of -5 is used, the solution will be
z=-3. See model B1 and B2 below.

model B1 model B2
 Real z(start=4); Real z(start=-5);
equation equation
 z^2=6-z; z^2=6-z;
end B1; end B2;

Result: z=2 Result: z=-3

Guess values are useful when working with nonlinear equations, and in particular if the ob-
jective is to start in a steady state. In that case, start values for state variables may be used
as guess values.

9.1.2 Initial Equations and Algorithms

Another method to set initial values of variables is to use the initial equation or initial al-
gorithm section.

model C
 Real x;
initial algorithm
 x:=1;
equation
 der(x) = -x + 1;
end C;

In model C, x will always start with its value equal to 1 while in model A (defined in Section
9.1.1), the start value of x could easily be changed by a modification. It is not possible to
change an initial equation section by a modification. An initial equation section is more
powerful than the start attribute, since you could calculate a start value using equations. For

Chapter 9: Modelica Aspects and Modeling Advice 67
example, in model D the variable x will start in steady state since der(x)=0 is used as an
initial equation.

model D
 Real x;
 Real y(start=3);
initial equation
 der(x)=0;
equation
 der(x) = -x + y + 1;
 der(y)= -y +2;
end D;

9.2 Events

An event is generated during simulation, for example when the Boolean expression of an
if equation changes its value. When an event occurs, the solver stops and iterates to find
the exact point in time of the event. These iterations can take some time and it is advised
to try to minimize them if possible.

One method to avoid unnecessary iterations is to use the built-in operator noEvent in or-
der to give a hint to the solver that event generation is not needed. This operator can only
be used if an expression is continuous during the event (not necessarily differentiable).

model EventTest
 Real x1;
 Real x2;
equation
 x1=if time<3 then time else 3 "Event generated at time=3";
 x2=noEvent(if time<3 then time else 3) "No event generated";
end EventTest;

The noEvent operator can also be used to protect against illegal evaluation. In the follow-
ing example sin(x)/x is calculated. To guard against division by zero, noEvent is used
around abs(x)>0 to make sure that sin(x)/x is not evaluated if x=0.

model GuardEval
 Real x;
 Real y;
equation
 x=time - 1;

68 Chapter 9: Modelica Aspects and Modeling Advice
 y=if noEvent(abs(x) > 0) then sin(x)/x else 1;
end GuardEval;

9.3 The MultiBody Library

Modelica.MultiBody is a Modelica library for 3D mechanical modeling. Working with
3D models can be tricky, since all parts need to be connected in space and initial values
need to be correct in order for the system to start. SystemModeler contains visualization for
models created with the MultiBody library to aid the user in analyzing the movement in
a convenient way. Below are some important things to consider when working with the
MultiBody library. An introduction to the library as well as information about its compo-
nents can be found by accessing the embedded documentation of the Modelica.Multi-
Body package and its classes. Figure 9-1 shows an example using the MultiBody library.

Figure 9-1: Example of a planar loop.

9.3.1 Initial Values

It is important to get the system to initialize the states properly to get a physically correct
model. In this example, we have chosen to use the states in the revolute3 component by
setting the parameter stateSelect in revolute3 to StateSelect.always. When
the model is translated or built, appropriate states are selected. The initial values of these
states are shown in the Variables tab in Simulation Center.

Figure 9-2: Selected states for the model in Figure 9-1.

Chapter 9: Modelica Aspects and Modeling Advice 69
As seen in Figure 9-2, the angle of the joint revolute1 will start with the speed 0.0 rad/s
and at the angle 0.78539 rad. These values can also be changed directly in the model in the
Variables tab in Model Center.

9.3.2 Angle and Position of Objects

It is very important to get a physically correct model, otherwise the system will likely fail
to start a simulation. Try to use simple directions, e.g. r={1,0,0), r={0,-1,0}, for
components like BodyCylinder, BodyBox, etc. If another direction is needed, change
phi in a joint or use the FixedRotation and FixedTranslation components avail-
able in MultiBody.Parts.

9.3.3 Animations

Some of the MultiBody components contain animation information. These are the Body,
BodyBox, BodyCylinder, and BodyShape components in MultiBody.Parts. There
are also visualizers that show properties like velocity, acceleration, etc. in Multi-
Body.Visualizers.

Figure 9-3: Animation of a simple loop model containing three bars from the model depicted in
Figure 9-1.

As indicated by their respective names, the BodyBox is box shaped and the BodyCylin-
der is cylinder shaped. If more variants of animated shapes are needed, e.g. sphere, cone,
gearwheel, etc., the BodyShape can be used, setting the parameter shapeType to the de-
sired shape. If only a pure animation is needed without physical properties, the Shape ob-
ject can be used.

70 Chapter 9: Modelica Aspects and Modeling Advice
Figure 9-4 shows an example of a pendulum with a sphere at the end, where the Body-
Shape component has been used to animate the sphere.

Figure 9-4: A pendulum model with a sphere shape at the end.

9.3.4 CAD Shapes

The documentation for the MultiBody library states that external shapes in the form of
DXF files can be specified by using shapeType "1", "2", ..., "n", with the corresponding
DXF file named "1.dxf", "2.dxf", ..., "n.dxf". As an extension to that, SystemModeler also
supports CAD data in the OBJ file format (see http://en.wikipedia.org/wiki/Obj). Further-
more, it is possible to use an arbitrary filename instead of just numbers. If the experiment
is saved, the simulation searches for CAD files in that directory. If that fails, it looks in the
directory where the model is saved. Another alternative is to specify the full path in the
model.

Figure 9-5: Animation view of
Modelica.Mechanics.MultiBody.Examples.Systems.RobotR3.fullRobot.

Chapter 9: Modelica Aspects and Modeling Advice 71
9.4 General Advice

Below is a collection of general tips that may prove useful to avoid some common prob-
lems.
• Debugging equation-based languages is a different task compared to algorithm-based

languages, since it is not possible to add break points, solve step by step, etc. Therefore,
try to build up your model step by step, i.e. make small tests of partial systems of your
complete model. If an error occurs, it will be a lot easier to locate if the model is small.

• Use the Validate Class feature, described in Chapter 3 of the SystemModeler User
Guide, when creating components. If a component validation is successful, it is more
likely that the component will work together with other components. A complete
component should always return an equal number of variables and equations from the
validation. Note that a partial model naturally often returns a different number of
equations than variables.

• If a simulation takes a long time, it could be due to a large number of events. The
number of events can be found in the simulation log after a simulation is finished. If
possible, try to reduce the number of events by using the noEvent (see Section 9.2)
operator or try to change your model. Note that when modeling sampled systems, an
event is generated at each sample time, which is normal.

• Try to avoid the automatic setting of output intervals when simulating a well-known
system. Since data is written to file at each solver step, this could drastically reduce the
simulation performance for larger systems. When the model behavior is known, it is
recommended to switch to a fixed number of output intervals or use an interval length
setting instead.

72 Chapter 9: Modelica Aspects and Modeling Advice

© 2012 Wolfram Research, Inc. Wolfram SystemModeler is a trademark of Wolfram
Research, Inc. All other trademarks are the property of their respective owners. 04.12CP

For further details, visit:

 www.wolfram.com/system-modeler
 reference.wolfram.com/system-modeler

http://reference.wolfram.com/system-modeler

	Wolfram SystemModeler Getting Started
	Contents
	Chapter 1: Introduction
	Chapter 2: Hello World
	2.1 Hello World Model
	2.1.1 Exercise

	Chapter 3: Multidomain-A Servo Mechanism
	3.1 DC Motor
	3.2 Stiff and Weak Axis
	3.2.1 Exercise

	3.3 Control System
	3.4 Sensitivity Analysis

	Chapter 4: Component-Based-Simple Circuit
	4.1 Block-Based Circuit
	4.2 Component-Based Circuit
	4.2.1 Exercise

	Chapter 5: Custom Component-Chain Pendulum
	5.1 Chain Link Component
	5.2 Chain Pendulum Model
	5.2.1 Exercise

	Chapter 6: External Function-Chirp Signal
	6.1 Chirp Function
	6.2 Modeling
	6.2.1 Exercise

	Chapter 7: Hierarchical Model-Tank System
	7.1 Flat Tank
	7.2 Component-Based Tank
	7.2.1 Interfaces
	7.2.2 Tank Components
	7.2.3 Controllers
	7.2.4 Small Tank System

	7.3 Tank with Continuous PID Controller
	7.4 Three Tank System

	Chapter 8: System-Inverted Pendulum
	8.1 Inverted Pendulum

	Chapter 9: Modelica Aspects and Modeling Advice
	9.1 Initial Values
	9.1.1 Start Attribute
	9.1.2 Initial Equations and Algorithms

	9.2 Events
	9.3 The MultiBody Library
	9.3.1 Initial Values
	9.3.2 Angle and Position of Objects
	9.3.3 Animations
	9.3.4 CAD Shapes

	9.4 General Advice

	For further details

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

