
Greedy Function Approximation:

A Gradient Boosting Machine

Jerome H. Friedman�

February 24, 1999

Abstract

Function approximation is viewed from the perspective of numerical optimization in

function space, rather than parameter space. A connection is made between stagewise addi-

tive expansions and steepest{descent minimization. A general gradient{descent \boosting"

paradigm is developed for additive expansions based on any �tting criterion. Speci�c al-

gorithms are presented for least{squares, least{absolute{deviation, and Huber{M loss func-

tions for regression, and multi{class logistic likelihood for classi�cation. Special enhance-

ments are derived for the particular case where the individual additive components are

decision trees, and tools for interpreting such \TreeBoost" models are presented. Gradient

boosting of decision trees produces competitive, highly robust, interpretable procedures for

regression and classi�cation, especially appropriate for mining less than clean data. Con-

nections between this approach and the boosting methods of Freund and Shapire 1996, and

Friedman, Hastie, and Tibshirani 1998 are discussed.

1 Function estimation

In the function estimation problem one has a system consisting of a random \output" or \re-
sponse" variable y and a set of random \input" or \explanatory" variables x = fx1; � � �; xng.
Given a \training" sample fyi;xig

N
1 of known (y;x){values, the goal is to �nd a function F �(x)

that maps x to y, such that over the joint distribution of all (y;x){values, the expected value
of some speci�ed loss function 	(y; F (x)) is minimized

F �(x) = argmin
F (x)

Ey;x	(y; F (x)) = argmin
F (x)

Ex [Ey((y; F (x)) jx] : (1)

Frequently employed loss functions 	(y; F) include squared{error (y � F)2 and absolute error
jy � F j for y 2 R1 (regression), and negative binomial log{likelihood, log(1 + e�2yF), when
y 2 f�1; 1g (classi�cation).

A common procedure is to take F (x) to be a member of a parameterized class of functions
F (x;P), where P = fP1; P2; � � �g is a set of parameters. In this paper we focus on \additive"
expansions of the form

F (x;P) =

MX
m=0

�mh(x; am); (2)

where P = f�m; amg
M
0 .

The functions h(x; a) in (2) are usually chosen to be simple functions of x with parameters
a = fa1; a2; � ��g. Such expansions (2) are at the heart of many function approximation methods
such as neural networks (Rumelhart, Hinton, and Williams 1986), radial basis functions (Powell

�CSIRO CMIS, Locked Bag 17, North Ryde NSW 1670; jhf@stat.stanford.edu

1

David S Tolliver
Technical Discussion: Foundations of TreeNet(tm) For further infomation consult:
 http://www.salford-systems.com/treenet.html

http://www.salford-systems.com/treenet.html

1987), MARS (Friedman 1991), wavelets (Donoho 1993), and support vector machines (Vapnik
1995). Of special interest here is the case where these functions are characterized by small
decision trees, such as those produced by CARTTM (Breiman, Friedman, Olshen, and Stone
1983) or C4.5 (Quinlan 1993). For decision trees the parameters a are the splitting variables,
split locations, and the terminal node means of the individual trees.

1.1 Numerical optimization

In general, choosing a parameterized model F (x;P) changes the function optimization problem
to one of parameter optimization

P� = argmin
P

�(P) = argmin
P

Ey;x	(y; F (x;P)); F �(x) = F (x;P�): (3)

For most F (x;P) and 	, numerical optimization methods must be applied to solve (3). This
involves expressing the solution for the parameters in the form

P� =

MX
m=0

pm (4)

where p0 is an initial guess and fpmg
M
1 are successive increments (\steps" or \boosts") de�ned

by the optimization method.

1.2 Steepest{descent

Steepest{descent is one of the simplest of the frequently used numerical minimization methods.
It de�nes the increments fpmg

M
1 (4) as follows. First the current gradient gm is computed

gm = fgjmg =

�
@�(P)

@Pj

�
P=Pm�1

where

Pm�1 =

m�1X
i=0

pi:

The step is taken to be

pm = ��mgm

where

�m = argmin
�

� (Pm�1 � �gm) : (5)

The negative gradient �gm is said to de�ne the \steepest{descent" direction and the last step
(5) is called the \line search" along that direction.

2 Numerical optimization in function space

Here we take the \nonparametric" approach and apply numerical optimization in function space.
That is we consider F (x) evaluated at each point x to be a \parameter" and seek to minimize

� (F (x)) = Ey;x	(y; F (x)) = Ex [Ey((y; F (x)) jx] ;

or equivalently

�(F (x)) = [Ey((y; F (x)) jx]

2

at each individual x, directly with respect to F (x). In function space there are an in�nite number
of such parameters, but in data sets (considered below) there are a �nite number fF (xi)g

N
1 .

Following the numerical optimization paradigm we take the solution to be

F �(x) =

MX
m=0

fm(x)

where f0(x) is an initial guess, and ffm(x)g
M
1 are incremental functions (\steps" or \boosts")

de�ned by the optimization method.
For steepest{descent

fm(x) = ��mgm(x) (6)

with

gm(x) =

�
@Ey[(y; F (x)) jx]

@F (x)

�
F (x)=Fm�1(x)

and

Fm�1(x) =

m�1X
i=0

fi(x):

Assuming su�cient regularity that one can interchange di�erentiation and integration, this be-
comes

gm(x) = Ey

�
@	(y; F (x))

@F (x)
jx

�
F (x)=Fm�1(x)

: (7)

The multiplier �m in (6) is given by the line search

�m = argmin
�

Ey;x	(y; Fm�1(x) � �gm(x)) : (8)

3 Finite data

The above approach breaks down when the joint distribution of (y;x) is represented by a �nite
data sample fyi;xig

N
1 . In this case Ey [� jx] cannot be evaluated accurately at each xi, and even

if it could, one would like to estimate F �(x) at x values other than the training sample points.
Strength must be borrowed from nearby points by imposing smoothness on the solution. One
way to do this is to assume a parameterized form such as (2) and do parameter optimization
as discussed in Section 1.1. Supposing this to be infeasible one can try a \greedy{stagewise"
approach. For m = 1; 2; � � �;M

(�m; am) = argmin
�;a

NX
i=1

	(yi; Fm�1(xi) + �h(xi; a)) (9)

and then

Fm(x) = Fm�1(x) + �mh(x; am): (10)

In signal processing this strategy is called \matching pursuit" (Mallat and Zhang 1993) where
	(y; F) is squared{error loss and the fh(x; am)g

M
1 are called basis functions, usually taken from

an over{complete wavelet{like dictionary. In machine learning, (9) (10) is called \boosting"
where y 2 f�1; 1g and 	(y; F) is either an exponential loss criterion e�yF (Freund and Schapire
1996, Schapire and Singer 1998) or negative binomial log{likelihood (Friedman, Hastie, and

3

Tibshirani 1998 { FHT98). The function h(x; a) is called a \weak learner" or \base learner",
and is usually a decision tree.

Suppose that for a particular loss 	(y; F) and/or base learner h(x; a) the solution to (9) is
di�cult to obtain. Given the current approximation Fm�1(x) at the mth iteration, the function
�mh(x; am) (9) (10) is the best greedy step towards the minimizing solution F �(x) (1), under
the constraint that the step \direction" h(x; am) be a member of the parameterized class of
functions h(x; a). It can thus can be viewed as a steepest{descent step (6) under that constraint.
By construction, the unconstrained negative gradient (7) gives the best steepest{descent step
direction at Fm�1(x). One possibility is to choose that member of the parameterized class h(x; a)
that is most parallel in the N{dimensional data space with the unconstrained negative gradient
f�gm(xi)g

N
1 . This is the h(x; a) most highly correlated with �gm(x) over the data distribution.

It can be obtained from the solution

am = argmin
a;�

NX
i=1

[�gm(xi)� �h(xi; a)]
2: (11)

This constrained negative gradient h(x; am) is used in place of the unconstrained one �gm(x)
(7) in the steepest{descent strategy. Speci�cally, the line search (8) is performed

�m = argmin
�

NX
i=1

	(yi; Fm�1(xi) + �h(xi; am))

and the approximation updated

Fm(x) = Fm�1(x) + �mh(x; am):

Basically, instead of obtaining the solution under a smoothness constraint (9), the constraint is
applied to the unconstrained (rough) solution f�gm(xi)g

N
i=1 (7). This permits the replacement

of the di�cult minimization problem (9) by least{squares minimization (11). Thus, for any
h(x; a) for which a least{squares algorithm exists, one can use this approach to minimize any
loss 	 (y; F) in conjunction with forward stagewise additive modeling. This leads to the following
(generic) algorithm using steepest{descent.

Algorithm 1: Gradient Boost

1 F0(x) = argmin�
PN

i=1	(yi; �)
2 For m = 1 to M do:

3 ~yi = �
h
@	(yi;F (xi))

@F (xi)

i
F (x)=Fm�1(x)

; i = 1; N

4 am = argmina;�
PN

i=1[~yi � �h(xi; a)]
2

5 �m = argmin�
PN

i=1	(yi; Fm�1(xi) + �h(xi; am))
6 Fm(x) = Fm�1(x) + �mh(x; am)
7 endFor

end Algorithm

In the special case where y 2 f�1; 1g and the loss function 	 (y; F) depends on y and F only
through their product 	 (y; F) = 	 (yF), the analogy of boosting (9) (10) to steepest{descent
minimization has been noted in the machine learning literature (Breiman 1997a, Ratsch, Onoda,
and Muller 1998). Du�y and Helmbold 1998 elegantly exploit this analogy to motivate their
GeoLev and GeoArc procedures. The quantity yF is called the \margin" and the steepest{
descent is performed in the space of margin values, rather than the space of function values
F . The latter approach permits application to more general loss functions where the notion of
margins is not apparent. Drucker 1997 employs a di�erent strategy of casting regression into
the framework of classi�cation in the context of the AdaBoost algorithm (Freund and Schapire
1996).

4

4 Applications: additive modeling

In this section the gradient boosting strategy is applied to several popular loss criteria: least{
squares (LS), least{absolute{deviation (LAD), Huber (M), and logistic binomial log{likelihood
(L). The �rst serves as a \reality check", where as the others lead to new boosting algorithms.

4.1 Least{squares regression

Here 	 (y; F) = (y�F)2=2. The \pseudo{response" in line 3 of Algorithm 1 is ~yi = yi�Fm�1(xi).
Thus, line 4 simply �ts the current residuals and the line search (line 5) produces the result
�m = �m, where �m is the minimizing � of line 4. Therefore, gradient boosting on squared{error
loss produces the usual stagewise approach of iteratively �tting the current residuals:

Algorithm 2: LS Boost

F0(x) = �y
For m = 1 to M do:

~yi = yi � Fm�1(xi); i = 1; N

(�m; am) = argmina;�
PN

i=1[~yi � �h(xi; a)]
2

Fm(x) = Fm�1(x) + �mh(x; am)
endFor
end Algorithm

4.2 Least-absolute-deviation regression

For the loss function 	 (y; F) = jy � F j, one has

~yi = �

�
@	(yi; F (xi))

@F (xi)

�
F (x)=Fm�1(x)

= sign(yi � Fm�1(xi)): (12)

This implies that h(x; a) is �t to the sign of the current residuals in line 4 of Algorithm 1. The
line search (line 5) becomes

�m = argmin
�

NX
i=1

jyi � Fm�1(xi)� �h(xi; am)j

= argmin
�

NX
i=1

jh(xi; am)j �

����yi � Fm�1(xi)

h(xi; am)
� �

����
= medianW

�
yi � Fm�1(xi)

h(xi; am)

�N
1

; wi = jh(xi; am)j: (13)

Here medianWf�g is the weighted median with weights wi. Inserting these results (12) (13) into
Algorithm 1 yields an algorithm for least-absolute-deviation boosting, based on any base learner
h(x; a). In the special case where the base learner is an L{terminal node decision tree more can
be done.

In most applications of numerical optimization a single line search (5) is performed along the
descent direction. One could also partition the parameters P into L{disjoint subsets (P1;P2; � �
�;PL). The gradient is correspondingly partitioned, and a separate line search performed in
each respective subspace. This might be useful if the parameters fall into natural groups such
that the line search is especially simple within each one. For our (function space) optimization
problem here, the parameters are the function values fF (xi)g

N
1 and a decision tree partitions

them according to terminal node membership of xi, at the mth iteration. Separate line searches
in each such \subset" corresponds to applying (13) separately to the data in each terminal node
of the decision tree

�lm = medianW

�
yi � Fm�1(xi)

h(xi; am)

���� xi 2 Rlm

�
; wi = jh(xi; am)j; (14)

5

where fRlmg
L
1 are the subregions of x{space corresponding to the L terminal nodes of the tree

induced at the mth iteration. However, the values of fh(xi; am) jxi 2 Rlmg are all equal to the
same value h(xi; am) = hlm1(xi 2 Rlm), so that (14) reduces to

�lm =
1

hlm
median fyi � Fm�1(xi)j xi 2 Rlmg

and the update on line 6 of Algorithm 1 becomes simply

Fm(x) = Fm�1(x) +median fyi � Fm�1(xi)j xi 2 Rlmg 1(x 2 Rlm):

At each iteration m, a decision tree is built to best predict the sign of the current residuals
yi�Fm�1(xi), based on a least{squares criterion. Then the approximation is updated by adding
the median of the residuals in each of the derived terminal nodes.

Algorithm 3: LAD TreeBoost

F0(x) = medianfyig
N
1

For m = 1 to M do:
~yi = sign(yi � Fm�1(xi)); i = 1; N
fRlmg

L
1 = L{terminal node tree(f~yi;xig

N
1)

lm = medianxi2Rlm fyi � Fm�1(xi)g ; l = 1; L
Fm(x) = Fm�1(x) +
lm1(x 2 Rlm)

endFor
end Algorithm

This algorithm is highly robust. The trees use only order information on the input variables
x, and the pseudo{responses ~yi (12) have only two values, ~yi 2 f�1; 1g. The line searches
(terminal node values) use only medians. An alternative approach would be to build a tree to
directly minimize the loss criterion

treem(x) = arg min
L{node tree

NX
i=1

jyi � Fm�1(xi)� tree(xi)j

Fm(x) = Fm�1(xi) + treem(x):

However, Algorithm 3 is much faster since it uses least{squares to induce the trees. Squared{
error loss is much more rapidly updated than mean-absolute-deviation when searching for splits
during the tree building process.

4.3 M{Regression

M{regression techniques attempt resistance to long{tailed error distributions and outliers while
maintaining high e�ciency for normally distributed errors. We consider the Huber loss function
(Huber 1964)

	 (y; F) =

�
1
2 (y � F)2 jy � F j � �

�(jy � F j � �=2) jy � F j > �
: (15)

Here the pseudo{response is

~yi = �

�
@	(yi; F (xi))

@F (xi)

�
F (x)=Fm�1(x)

=

�
yi � Fm�1(xi) jyi � Fm�1(xi)j � �

� � sign(yi � Fm�1(xi)) jyi � Fm�1(xi)j > �
:

and the line search becomes

�m = argmin
�

NX
i=1

	(yi; Fm�1(xi) + �h(xi; am)) (16)

6

with 	 given by (15). The solution to (15) (16) can be obtained by standard iterative methods
(see Huber 1964).

The value of the transition point � depends on the iteration number m. In particular, �m
is taken to be the ��quantile of the distribution of fjyi � Fm�1(xi)jg

N
1 , with the value of �

controlling the break{down point of the procedure. The \break{down" point is the fraction
of observations that can be arbitrarily modi�ed without seriously degrading the quality of the
result.

With decision trees as base learners we use the partition strategy of a separate line search in
each terminal node Rlm:

�lm = argmin
�

X
xi2Rlm

	(yi; Fm�1(xi) + �hlm)

or

lm = �lmhlm = argmin

X
xi2Rlm

	(yi; Fm�1(xi) +
)) (17)

and the update is

Fm(x) = Fm�1(x) +
lm1(x 2 Rlm):

The solution to (17) can be approximated by a single step of the standard iterative procedure
(Huber 1964) starting at the median

~rlm = medianxi2Rlmfrm�1(xi)g:

where frm�1(xi)g
N
1 are the current residuals

rm�1(xi) = yi � Fm�1(xi):

The approximation is

lm = ~rlm +
1

Nlm

X
xi2Rlm

sign(rm�1(xi)� ~rlm) �min(�m; abs(rm�1(xi)� ~rlm));

where Nlm is the number of observations in the lth terminal node. This gives the following
algorithm for Huber M{gradient boosting with decision trees:

Algorithm 4: M TreeBoost

F0(x) = medianfyig
N
1

For m = 1 to M do:
rm�1(xi) = yi � Fm�1(xi); i = 1; N
�m =quantile�fjrm�1(xi)jg

N
1

~yi =

�
rm�1(xi) jrm�1(xi)j � �m

�m � sign(rm�1(xi)) jrm�1(xi)j > �m
; i = 1; N

fRlmg
L
1 = L{terminal node tree(f~yi;xig

N
1)

~rlm = medianxi2Rlm frm�1(xi)g ; l = 1; L

lm = ~rlm + 1

Nlm

P
xi2Rlm

sign(rm�1(xi)� ~rlm) �min(�m; abs(rm�1(xi)� ~rlm));

l = 1; L
Fm(x) = Fm�1(x) +
lm1(x 2 Rlm)

endFor
end Algorithm

According to the theory of robust regression, this algorithm should have properties similar
to that of least{squares boosting (Algorithm 2) for normally distributed errors, and similar to
that of least{absolute{deviation regression (Algorithm 3) with very long tailed distributions. For
error distributions with only moderately long tails it may have performance superior to both.

7

4.4 Two{class logistic regression

Here the loss function is negative binomial log{likelihood (FHT98)

	 (y; F) = log (1 + exp(�2yF)) ; y 2 f�1; 1g;

where

F (x) =
1

2
log

�
Pr(y = 1 jx)

Pr(y = �1 jx)

�
: (18)

The pseudo{response is

~yi = �

�
@	(yi; F (xi))

@F (xi)

�
F (x)=Fm�1(x)

= 2yi�(1 + exp(2yiFm�1(xi)): (19)

The line search becomes

�m = argmin
�

NX
i=1

log (1 + exp(�2yi(Fm�1(xi) + �h(xi; am)))):

With decision trees as base learners we again use the partition strategy of a separate line search
in each terminal node Rlm:

�lm = argmin
�

X
xi2Rlm

log (1 + exp(�2yi(Fm�1(xi) + �hlm)))

or

lm = �lmhlm = argmin

X
xi2Rlm

log (1 + exp(�2yi(Fm�1(xi) +
))) (20)

and

Fm(x) = Fm�1(x) +
lm1(x 2 Rlm):

There is no closed form solution to (20). Following the FHT98 strategy we approximate it by a
single Newton{Raphson step. This turns out to be

lm =
X

xi2Rlm

~yi

, X
xi2Rlm

j~yij (2� j~yij)

with ~yi given by (19). This gives the following algorithm for logit gradient boosting with decision
trees:

Algorithm 5: L2 TreeBoost

F0(x) =
1
2 log

1+�y
1��y

For m = 1 to M do:
~yi = 2yi�(1 + exp(2yiFm�1(xi)); i = 1; N
fRlmg

L
1 = L{terminal node tree(f~yi;xig

N
1)

lm =
P

xi2Rlm
~yi�

P
xi2Rlm

j~yij (2� j~yij); l = 1; L

Fm(x) = Fm�1(x) +
lm1(x 2 Rlm)
endFor
end Algorithm

The �nal approximation FM (x) is related to log{odds through (18). This can be inverted to
yield probability estimates

p+(x) = cPr(y = 1 jx) = 1/ (1 + e�2FM (x))

p�(x) = cPr(y = �1 jx) = 1/ (1 + e2FM (x)):

These in turn can be used for classi�cation

ŷ(x) = 2 � 1[c(�1; 1) p+(x) > c(1;�1) p�(x)] � 1

where c(ŷ; y) is the cost associated with predicting ŷ when the truth is y.

8

4.4.1 In
uence trimming

The empirical loss function for the two{class logistic regression problem at the mth iteration is

�m(�; a) =
NX
i=1

log[1 + exp(�2yiFm�1(xi)) � exp(�2yi�h(xi; a))]: (21)

If yiFm�1(xi) is very large, then (21) has almost no dependence on �h(xi; a) for small to moderate
values near zero. This implies that the ith observation (yi;xi) has almost no in
uence on the
loss function, and therefore on its solution

(�m; am) = argmin
�;a

�(�; a):

This suggests that all observations (yi;xi) for which yiFm�1(xi) is relatively very large can be
deleted from all computations of the mth iteration without having a substantial e�ect on the
result. Thus,

wi = exp(�2yiFm�1(xi)) (22)

can be viewed as a measure of the \in
uence" or weight of the ith observation on the estimate
�mh(x; am).

More generally the in
uence on an estimate of changes in a parameter value (holding all the
other parameters �xed) can be gauged by the second derivative of the loss function with respect
to that parameter evaluated at the solution. In the space of function values, the parameters are
fF (xi)g

N
i=1. Here the second derivatives at the mth iteration are j~yij (2� j~yij) with ~yi given by

(19). Thus, another measure of the in
uence or \weight" of the ith observation on the estimate
�mh(x; am) at the mth iteration is

wi = j~yij (2� j~yij): (23)

In
uence trimming deletes all observations with wi{values less that wl(�), where l(�) is the
solution to

l(�)X
i=1

w(i) = �

NX
i=1

wi: (24)

Here fw(i)g
N
1 are the weights fwig

N
1 arranged in ascending order. Typical values are � 2

[0:05; 0:2]. Note that in
uence trimming based on (22) (24) is identical to the \weight trim-
ming" strategy employed with Real AdaBoost, whereas (23) (24) is equivalent to that used with
LogitBoost, in FHT98. There it was seen that 90% to 95% of the observations were often deleted
without sacri�cing accuracy of the estimates, using either in
uence measure. This results in a
corresponding reduction in computation by factors of 10 to 20.

4.5 Multi{class logistic regression

Here we develop a gradient{descent algorithm for the K{class problem. The loss function is

	
�
fyk; Fk(x)g

K
1

�
= �

KX
k=1

yk log pk(x); (25)

where yk = 1(class = k) 2 f0; 1g; and pk(x) = Pr(yk = 1 jx). Following FHT98, we use the
symmetric multiple logistic transform

Fk(x) = log pk(x)�
1

K

KX
l=1

log pl(x)

9

or equivalently

pk(x) = exp(Fk(x))

,
KX
l=1

exp(Fl(x)) : (26)

Substituting (26) into (25) and taking �rst derivatives one has

~yik = �

"
@	(fyij ; Fj(xi)g

K
j=1)

@Fk(xi)

#
fFj (x)=Fj;m�1(x)gK1

= yik � pk(xi): (27)

Thus, K{trees are induced, each to predict the corresponding current residuals fyik�pk(xi)g
N
i=1.

This produces K trees each with L{terminal nodes at iteration m, fRklmg. As above, a separate
line search is performed in each terminal node l of each tree k,

klm = argmin

X
xi2Rklm

�k (yik; Fk;m�1(xi) +
) (28)

with �k = �yk log pk(x), and pk(x) given by (26). The update for each of the K functions is

Fkm(x) = Fk;m�1(x) +
klm1(x 2 Rklm):

There is no closed form solution to (28), so again we approximate it with a single Newton{
Raphson step. Following FHT98, we use a diagonal approximation to the Hessian, resulting in
the step

klm =
K � 1

K

P
xi2Rklm

~yikP
xi2Rklm

j~yikj (1� j~yikj)
: (29)

This leads to the following algorithm for K{class logistic gradient boosting:

Algorithm 6: LK TreeBoost

Fk0(x) = 0; k = 1;K
For m = 1 to M do:

pk(x) = exp(Fk(x))�
PK

l=1 exp(Fl(x)); k = 1;K
For k = 1 to K do:

~yik = yik � pk(xi); i = 1; N
fRklmg

L
l=1 = L{terminal node tree(f~yik;xig

N
1)

klm = K�1
K

P
xi2Rklm

~yik
P

xi2Rklm
j~yikj (1�j~yikj)

; l = 1; L

Fkm(x) = Fk;m�1(x) +
klm1(x 2 Rklm)
endFor

endFor
end Algorithm

The �nal estimates fFkM (x)gK1 can be used to obtain corresponding probability estimates
fpkM (x)gK1 through (26). These in turn can be used for classi�cation

k̂(x) = arg min
1�k�K

KX
k0=1

c(k; k0) pk0M (x)

where c(k; k0) is the cost associated with predicting the kth class when the truth is k0. Note that
for K = 2 Algorithm 6 is equivalent to Algorithm 5.

Algorithm 6 bears a close similarity to the K{class LogitBoost procedure of FHT98. In that
algorithm K trees were induced, each using corresponding pseudo{responses

~yik =
K � 1

K

yik � pk(xi)

pk(xi) (1� pk(xi))
(30)

10

and a weight

wk(xi) = pk(xi) (1� pk(xi)) (31)

applied to each observation (~yik;xi). The terminal node updates were

klm =

P
xi2Rklm

wk(xi) ~yikP
xi2Rklm

wk(xi)

which is equivalent to (29). The di�erence between the two algorithms is the splitting criterion
used to induce the trees and thereby the terminal regions fRklmg

L
1 .

The least{squares improvement criterion used to evaluate potential splits of a currently ter-
minal region R into two subregions (Rl; Rr) is

I2(Rl; Rr) =
wlwr

wl + wr
(�yl � �yr)

2 (32)

where �yl, �yr are the left and right daughter response means respectively, and wl, wr are the
corresponding sums of the weights. For a given split, using (27) with unit weights, or (30) with
weights (31), give the same values for �yl, �yr. However, the weight sums wl, wr are di�erent.
Unit weights favor splits that are symmetric in the number of observations in each daughter
node, whereas (31) favors splits for which the sums of the currently estimated response variances
var(yik) = pk(xi) (1� pk(xi)) are more equal.

LK TreeBoost has an implementation advantage in numerical stability. LogitBoost becomes
numerically unstable whenever the value of (31) is close to zero for any observation xi, which
happens quite frequently. Its performance is strongly a�ected by the way this is handled (see
FHT98, pg.18). LK TreeBoost has such di�culties only when (31) is close to zero for all obser-
vations in a terminal node. This happens much less frequently, and is easier to deal with when
it does happen.

In
uence trimming for the multi{class procedure is implemented in the same way as that for
the two{class case outlined in Section 4.4.1 . Associated with each \observation" (yik;xi) is an
in
uence wik = j~yikj (1 � j~yikj) which is used for deleting observations (24) when inducing the
kth tree at the current iteration m.

5 Regularization

In prediction problems, �tting the training data too closely can be counterproductive. Reducing
the expected loss on the training data beyond some point causes the population{expected loss
to stop decreasing, and often start to increase. Regularization methods attempt to prevent such
\over{�tting" by constraining the �tting procedure. For additive expansions (2) a natural regu-
larization parameter is the number of components M: This is analogous to \stepwise" regression
where the fh(x; am)g

M
1 are considered explanatory variables that are sequentially entered. Con-

trolling the value of M regulates the degree to which expected loss on the training data can be
minimized. The best value for M can be estimated by some model selection method, such as
cross{validation.

When the goal is prediction (as opposed to compression) it has often been found that regu-
larization through shrinkage provides superior results to that obtained by restricting the number
of components (Copas 1983). Let

F̂ (x) =arg min
F (x)2z

NX
i=1

	(yi; �y + F (xi))

minimize the training data expected loss over some class of functions z, where �y is the optimal
constant solution

�y = argmin

NX
i=1

	(yi;
):

11

The simplest form of regularization through shrinkage is direct proportional shrinkage

F̂�(x) = �y + �F̂ (x); 0 < � � 1:

The degree of regularization is controlled by the value of �:Decreasing its value generally increases
the expected training data loss

�1 < �2)
NX
i=1

	(yi; �1F̂ (xi) + �y) >
NX
i=1

	(yi; �2F̂ (xi) + �y);

with the largest value � = 1 giving the best �t (by de�nition) to the training data. The optimal
value of � that minimizes population expected loss is usually smaller, and it can be estimated
by some model selection method, such as cross{validation.

In the context of additive models (2) constructed in a forward stage{wise manner (9) (10),
proportional shrinkage is implemented by replacing line 6 of the generic algorithm (Algorithm
1) with

Fm(x) = Fm�1(x) + ��mh(x; am); � � 1; (33)

and making the corresponding equivalent changes in all of the speci�c algorithms (Algorithms 2
- 6). Each update is simply scaled by the value of �.

Introducing proportional shrinkage into gradient boosting (33) provides two regularization
parameters, � and the number of components M . Each one can control the degree-of-�t and
thus a�ect the best value for other one. Decreasing the value of � increases the best value
for M . Ideally one should estimate optimal values for both by minimizing a model selection
criterion jointly with respect to the values of the two parameters. There are also computational
considerations; increasing the size of M produces a proportionate increase in computation.

We illustrate this �-M trade{o� through a simulation study. The training sample consists of
5000 observations fyi;xig with

yi = F �(xi) + "i:

The target function F �(x), x 2 R10, is randomly generated as described in Section 6.1. The
noise " was generated from a normal distribution with zero mean, and variance adjusted so that

Ej"j =
1

2
ExjF

�(x)�medianxF
�(x)j

giving a \signal{to{noise" ratio of 2=1. The base learner h(x; a) is taken to be an 11{ terminal
node decision tree induced in a best{�rst manner (FHT98).

Figure 1 shows the lack{of{�t (LOF) of LS TreeBoost, LAD TreeBoost, and L2 TreeBoost
as a function of number of terms (iterations) M , for several values of the shrinkage parameter
� 2 f1:0; 0:25; 0:125; 0:06g. For the �rst two methods, LOF is measured by the average absolute
error of the estimate F̂M (x) relative to that of the optimal constant solution

A(F̂M (x)) =
ExjF

�(x)� F̂M (x)j

ExjF �(x)�medianxF �(x)j
: (34)

For logistic regression the y{values were obtained by thresholding at the median of F �(x) over
the distribution of x{values; F �(xi) values greater than the median were assigned yi = 1, those
below the median were assigned yi = �1. The Bayes error rate is thus zero, but the decision
boundary is fairly complicated. There are two LOF measures for L2 TreeBoost; minus twice
log{likelihood, and the misclassi�cation error{rate Ex[1(y 6= sign(F̂M (x)))]. The values of all
LOF measures were computed by using an independent validation data set of 10000 observations.

As seen in Fig. 1, smaller values of the shrinkage parameter � (more shrinkage) are seen
to result in better performance, although there is a diminishing return for the smallest values.

12

For the larger values, behavior characteristic of over{�tting is observed; performance reaches
an optimum at some value of M and thereafter diminishes as M increases beyond that point.
This e�ect is much less pronounced with LAD TreeBoost, and with the error{rate criterion of
L2 TreeBoost. For smaller values of � there is less over{�tting, as would be expected.

Although di�cult to see except for � = 1, the misclassi�cation error{rate (lower right panel)
continues to decrease well after the logistic likelihood has reached its optimum. Thus, degrading
the likelihood by over{�tting actually improves misclassi�cation error{rate. Although perhaps
counter{intuitive, this is not a contradiction; likelihood and error{rate measure di�erent aspects
of �t quality. Error{rate depends only on the sign of F̂M (x) whereas likelihood is a�ected by
both its sign and magnitude. Apparently, over{�tting degrades the quality of the magnitude
estimate without a�ecting (and sometimes improving) the sign. Thus, misclassi�cation error is
much less sensitive to over{�tting.

Table 1 summarizes the simulation results for several values of � including those shown in
Fig. 1. Shown for each �{value (row) are the iteration number at which the minimum LOF was
achieved and the corresponding minimizing value (pairs of columns).

Table 1

Iteration number giving the best �t, and the best �t value, for several shrinkage parameter
�{values, with three boosting methods.

� LS: A(FM (x)) LAD: A(FM (x)) L2: �2 log(like) L2: error-rate

1.0 15 0.48 19 0.57 20 0.60 436 0.111
0.5 43 0.40 19 0.44 80 0.50 371 0.106
0.25 77 0.34 84 0.38 310 0.46 967 0.099
0.125 146 0.32 307 0.35 570 0.45 580 0.098
0.06 326 0.32 509 0.35 1000 0.44 994 0.094
0.03 855 0.32 937 0.35 1000 0.45 979 0.097

The �-M trade{o� is clearly evident; smaller values of � give rise to larger optimalM{values.
They also provide higher accuracy, with a diminishing return for � < 0:125. The misclassi�cation
error rate is very
at for M & 200, so that optimal M{values for it are unstable.

Although illustrated here for just one target function, the qualitative nature of these results is
fairly universal. Other target functions (not shown) give rise to the same behavior. This suggests
that the best value for � depends on the number of iterations M . The latter should be made
as large as is computationally convenient or feasible. The value of � should then be adjusted so
that LOF achieves its minimum close to the value chosen for M . If LOF is still decreasing at the
last iteration, the value of � or the number of iterations M should be increased, preferably the
latter. Given the sequential nature of the algorithm, it can easily be restarted where it �nished
previously, so that no computation need be repeated. LOF as a function of iteration number is
most conveniently estimated using a left{out test sample.

6 Simulation studies

The performance of any function estimation method depends on the particular problem to which
it is applied. Important characteristics of problems that a�ect performance include training sam-
ple size N , true underlying \target" function F �(x) (1), and the distribution of the departures, ",
of y jx from F �(x). For any given problem, N is always known and sometimes the distribution of
" is also know, for example when y is binary (Bernoulli). When y is a general real{valued variable
the distribution of " is seldom known. In nearly all cases, the nature of F �(x) is unknown.

In order to gauge the value of any estimation method it is necessary to accurately evaluate
its performance over many di�erent situations. This is most conveniently accomplished through
Monte Carlo simulation where data can be generated according to a wide variety of prescrip-
tions, and resulting performance accurately calculated. In this section several such studies are

13

Iterations

A
b
s
o
lu

te
 e

rr
o
r

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

LS_TreeBoost

Iterations
A

b
s
o
lu

te
 e

rr
o
r

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

LAD_TreeBoost

Iterations

-2
lo

g
-l
ik

e
li
h
o
o
d

0 200 400 600 800 1000

0
.0

0
.4

0
.8

1
.2

L2_TreeBoost

Iterations

m
is

c
la

s
s
 e

rr
o
r

ra
te

0 200 400 600 800 1000

0
.0

0
.1

0
0
.2

0
0
.3

0

L2_TreeBoost

Figure 1: Performance of three gradient boosting algorithms as a function of number of iterations
M . The four curves correspond to shrinkage parameter values of � 2 f1:0; 0:25; 0:125; 0:06g, and
are in that order (top to bottom) at the extreme right of each plot.

14

presented in an attempt to understand the properties of the various Gradient TreeBoost pro-
cedures developed in the previous sections. Although such a study is far more thorough than
evaluating the methods on just a few selected examples, real or simulated, the results of even a
large study can only be regarded as suggestive in the absence of a comprehensive theory.

6.1 Random function generator

One of the most important characteristics of any problem a�ecting performance is the true
underlying target function F �(x) (1). Every method has particular targets for which it is most
appropriate and others for which it is not. Since the nature of the target function can vary
greatly over di�erent problems, and is seldom known, we evaluate the merits of decision tree
gradient boosting on a variety of di�erent randomly generated targets. Each one takes the form

F �(x) =

20X
l=1

algl(zl): (35)

The coe�cients falg
20
1 are randomly generated from a uniform distribution al v U [�1; 1]. Each

gl(zl) is a function of a randomly selected subset, of size nl, of the n{input variables x. Speci�-
cally,

zl = fxPl(j)g
nl
j=1

where each Pl is a separate random permutation of the integers f1; 2; � � �; ng. The size of each
subset nl is itself taken to be random, nl = b1:5 + rc, with r being drawn from an exponential
distribution with mean � = 2. Thus, the expected number of input variables for each gl(zl) is
between three and four. However, most often there will be fewer than that, and somewhat less
often, more. This re
ects a bias that very high order interactions are less frequent in most targets
commonly encountered in practice. However, for any realized F �(x) there is a good chance that
at least a few of the 20 functions gl(zl) will involve higher order interactions. In any case, F �(x)
will be a function of all, or nearly all, of the input variables.

Each gl(zl) is an nl{dimensional Gaussian function

gl(zl) = exp(�
1

2
((zl � �l)

TVl(zl � �l)) (36)

where each of the mean vectors f�lg
20
1 is randomly generated from the same distribution as

that of the input variables x. The nl � nl covariance matrix Vl is also randomly generated.
Speci�cally,

Vl = UlDlU
T
l

where Ul is a random orthonormal matrix and Dl = diagfd1l � � � dnllg. The square{roots of the
eigenvalues are randomly generated from a uniform distribution

p
djl v U [a; b], where the limits

a; b depend on the distribution of the input variables x.
For all of the studies presented here the number of input variables was taken to be n = 10,

and their joint distribution was taken to be standard normal x v N(0; I). The eigenvalue limits
were a = 0:1 and b = 2:0. Although the tails of the normal distribution are often shorter than
that of data encountered in practice, they are still more realistic than uniformly distributed
inputs often used in simulation studies. Also, decision trees are immune to the e�ects of long
tailed input variable distributions, so shorter tails gives a relative advantage to competitors in
the comparisons.

In the simulation studies below, 100 target functions F �(x) were randomly generated accord-
ing to the above prescription (35) (36). Performance is evaluated in terms of the distribution of
approximation inaccuracy (relative approximation error (34), or misclassi�cation risk) over these
di�erent targets. This approach allows a wide variety of quite di�erent target functions to be

15

generated in terms of the shapes of their contours in the ten{dimensional input space. Although
lower order interactions are favored, these functions are not especially well suited to additive
decision trees. Decision trees produce tensor product basis functions, and the components gl(zl)
of the targets F �(x) are not tensor product functions.

Although there are only ten input variables, each target is a function of all of them. In many
data mining applications there are many more than ten inputs. However, the relevant dimen-
sionalities are the intrinsic dimensionality of the input space, and the number of inputs that
actually in
uence the output response variable y. In problems with many input variables there
are usually high degrees of collinearity among many of them, and the number of roughly inde-
pendent variables (approximate intrinsic dimensionality) is much smaller. Also, target functions
often strongly depend only on a small subset of all of the inputs.

6.2 Error distribution

In this section, LS TreeBoost, LAD TreeBoost, and M TreeBoost are compared in terms of
their performance over the 100 target functions for two di�erent error distributions. Best{�rst
decision trees with 11 terminal nodes were used with all algorithms. The break{down parameter
for the M TreeBoost was set to its default value � = 0:9. One hundred data sets fyi;xig

N
1 were

generated according to

yi = F �(xi) + "i

where F �(x) represents each of the 100 target functions randomly generated as described in
Section 6.1. For the �rst study, the errors "i were generated from a normal distribution with
zero mean, and variance adjusted so that

Ej"j = ExjF
�(x)�medianxF

�(x)j (37)

giving a 1=1 signal{to{noise ratio. For the second study the errors were generated from a \slash"
distribution, "i = s � (u=v), where u v N(0; 1) and v v U [0; 1]. The scale factor s is adjusted
to give a 1=1 signal{to{noise ratio (37). The slash distribution has very thick tails and is often
used as an extreme to test robustness. The training sample size was taken to be N = 7500, with
5000 used for training, and 2500 left out as a test sample to estimate the optimal number of
components M . For each of the 100 trials an additional validation sample of 5000 observations
was generated (without error) to evaluate the approximation inaccuracy (34) for that trial. The
shrinkage parameter (33) was set to its default value of � = 0:1.

The left panels of Fig. 2 show boxplots of the distribution of approximation inaccuracy
(34) over the 100 targets for the two error distributions for each of the three methods. The
shaded area of each boxplot shows the interquartile range of the distribution with the enclosed
white bar being the median. The outer hinges represent the points closest to (plus/minus)1.5
interquartile range units from the (upper/lower) quartiles. The isolated bars represent individual
points outside this range (outliers).

These plots allow the comparison of the overall distributions, but give no information con-
cerning relative performance for individual target functions. The right two panels of Fig. 2
attempt to provide such a summary. They show distributions of error ratios, rather than the
errors themselves. For each target function and method, the error for the method on that target
is divided by the smallest error obtained on that target, over all of the methods (here three)
being compared. Thus, for each of the 100 trials, the best method receives a value of 1:0 and the
others receive a larger value. If a particular method was best (smallest error) for all 100 target
functions, its resulting distribution (boxplot) would be a point mass at the value 1:0. Note that
the logarithm of this ratio is plotted in the lower right panel.

From the left panels of Fig. 2 one sees that the 100 targets represent a fairly wide spectrum of
di�culty for all three methods; approximation errors vary by over a factor of two. For normally
distributed errors LS TreeBoost is the superior performer, as might be expected. It had the
smallest error in 73 of the trials, with M TreeBoost best the other 27 times. On average

16

0.
25

0.
35

0.
45

0.
55

LS LAD M

Er
ro

r

Normal

1.
00

1.
04

1.
08

1.
12

LS LAD M

Er
ro

r/m
in

(e
rro

r)

Normal

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

LS LAD M

Er
ro

r

Slash

0.
0

0.
5

1.
0

1.
5

2.
0

LS LAD M

Lo
g(

er
ro

r/m
in

(e
rro

r))

Slash

Figure 2: Distribution of absolute approximation error (left panels) and error relative to the best
(right panels) for LS TreeBoost, LAD TreeBoost and M TreeBoost for normal and slash error
distributions. LS TreeBoost performs best with the normal error distribution. LAD TreeBoost
and M TreeBoost both perform well with slash errors. M TreeBoost is very close to the best for
both error distributions. Note the use of logarithmic scale in the lower right panel.

LS TreeBoost was 0:2% worse than the best, M TreeBoost 0:9% worse, and LAD TreeBoost was
7:4% worse that the best.

With slash{distributed errors things are reversed. On average the approximation error for
LS TreeBoost was 0:95, thereby explaining only 5% target variation. On individual trials how-
ever, it could be much better or much worse. The performance of both LAD TreeBoost and
M TreeBoost was much better and comparable to each other. LAD TreeBoost was best 32
times and M TreeBoost 68 times. On average LAD TreeBoost was 4:1% worse than the best,
M TreeBoost 1:0% worse, and LS TreeBoost was 364:6% worse that the best, over the 100 tar-
gets.

The results suggest that of these three, M TreeBoost is the method of choice. In both the
extreme cases of very well behaved (normal) and very badly behaved (slash) errors, its perfor-
mance was very close to that of the best. By comparison, LAD TreeBoost su�ered somewhat
with normal errors, and LS TreeBoost was disastrous with slash errors.

6.3 LS TreeBoost versus MARS

All Gradient TreeBoost algorithms produce piecewise{constant approximations. Although the
number of such pieces is generally much larger than that produced by a single tree, this aspect of
the approximating function F̂M (x) might be expected to represent a disadvantage with respect
to methods that provide continuous approximations, especially when the true underlying target
F �(x) (1) is continuous and fairly smooth. All of the randomly generated target functions (35)
(36) are continuous and very smooth. In this section we investigate the extent of the piecewise{
constant disadvantage by comparing the accuracy of Gradient TreeBoost with that of MARS
(Friedman 1991) over these 100 targets. Like TreeBoost, MARS produces a tensor product based
approximation. However it uses continuous functions as the product factors, thereby producing

17

a continuous approximation. It also uses a more involved strategy to induce the tensor products.
Since MARS is based on least{squares �tting, we compare it to LS TreeBoost using normally

distributed errors, again with a 1=1 signal{to{noise ratio (37). The experimental setup is the
same as that in Section 6.2. It is interesting to note that here the performance of MARS was
considerably enhanced by using the 2500 test set for model selection, rather than its default
GCV criterion (Friedman 1991).

The top{left panel of Fig. 3 compares the distribution of MARS average{absolute approxima-
tion errors, over the 100 randomly generated target functions (35) (36), to that of LS TreeBoost
from Fig. 2. The MARS distribution is seen to be much broader, varying by almost a factor of
three. There were many targets for which MARS did considerably better than LS TreeBoost,
and many for which it was substantially worse. This further illustrates the fact that the nature
of the target function strongly in
uences the relative performance of di�erent methods. The
top{right panel of Fig. 3 shows the distribution of errors, relative to the best for each target.
The two methods exhibit similar performance based on average{absolute error. There were a
number of targets where each one substantially outperformed the other.

The bottom two panels of Fig. 3 show corresponding plots based on root{mean{squared
error. This gives proportionally more weight to larger errors in assessing lack{of{performance.
For LS TreeBoost the two error measures have close to the same values for all of the 100 targets.
However with MARS, root{mean{squared error is typically 30% higher than average{absolute
error. This indicates that MARS predictions tend to be either very close to, or far from, the
target. The errors from LS TreeBoost are more evenly distributed. It tends to have fewer very
large errors or very small errors. The latter may be a consequence of the piecewise{constant
nature of the approximation which makes it di�cult to get arbitrarily close to very smoothly
varying targets with approximations of �nite size. As Fig. 3 illustrates, relative performance
can be quite sensitive to the criterion used to measure it.

These results indicate that the piecewise{constant aspect of TreeBoost approximations is not
a serious disadvantage. In the rather pristine environment of normal errors, and normal input
variable distributions, it is competitive with MARS. The advantage of the piecewise{constant
approach is robustness; speci�cally, it provides immunity to the adverse e�ects of wide tails
and outliers in the distribution of the input variables x. Methods that produce continuous
approximations, such as MARS, can be extremely sensitive to such problems. Also, as shown
in Section 6.2, M TreeBoost (Algorithm 4) is nearly as accurate as LS TreeBoost for normal
errors while, in addition, being highly resistant to output y{outliers. Therefore in data mining
applications where the cleanliness of the data is not assured and x and/or y outliers may be
present, the relatively high accuracy, consistent performance, and robustness of M TreeBoost
may represent a substantial advantage.

6.4 LK TreeBoost versus K{class LogitBoost and AdaBoost.MH

In this section the performance of LK TreeBoost is compared to that of K{class LogitBoost
(FHT98) and AdaBoost.MH (Schapire and Singer 1998) over the 100 randomly generated targets
(Section 6.1). HereK = 5 classes are generated by thresholding each target at its 0.2, 0.4, 0.6, and
0.8 quantiles over the distribution of input x{values. There are N = 7500 training observations
for each trial (1500 per class) divided into 5000 for training and 2500 for model selection (number
of iterations, M). An independently generated validation sample of 5000 observations was used
to estimate the error{rate for each target. The Bayes error rate is zero for all targets, but the
induced decision boundaries can become quite complicated, depending on the nature of each
individual target function F �(x). Decision trees with 11 terminal nodes were used for each
method.

Figure 4 shows the distribution of error{rate (left panel), and its ratio to the smallest (right
panel), over the 100 target functions, for each of the three methods. The error{rate of all three
methods is seen to vary substantially over these targets. LK TreeBoost is seen to be the generally
superior performer. It had the smallest error for 78 of the trials and on average its error{rate
was 0.6% higher than the best for each trial. LogitBoost was best on 21 of the targets and there

18

0
.3

0
.4

0
.5

0
.6

LS_TreeBoost MARS

E
rr

o
r

Abs-error

1
.0

0
1
.1

0
1
.2

0

LS_TreeBoost MARS

E
rr

o
r/

m
in

(e
rr

o
r)

Abs-error

0
.3

0
.4

0
.5

0
.6

0
.7

LS_TreeBoost MARS

E
rr

o
r

Rms-error

1
.0

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

LS_TreeBoost MARS

E
rr

o
r/

m
in

(e
rr

o
r)

Rms-error

Figure 3: Distribution of approximation error (left panels) and error relative to the best (right
panels) for LS TreeBoost and MARS. The top panels are based on average{absolute{error,
whereas the bottom ones use root{mean{squared error. For absolute error the MARS distri-
bution is wider indicating more frequent better and worse performance than LS TreeBoost.
MARS performance as measured by root{mean{squared error is much worse, indicating that it
tends to more frequently make both larger and smaller errors than LS TreeBoost.

19

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

LK_TreeBoost LogitBoost AdaBoost

Error-rate

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

1.
30

LK_TreeBoost LogitBoost AdaBoost

Rel. error-rate

Figure 4: Distribution of error{rate on a �ve{class problem (left panel) and error{rate relative to
the best (right panel) for LK TreeBoost, LogitBoost, and AdaBoost.MH. LK TreeBoost exhibits
superior performance.

was one tie. Its error{rate was 3.5% higher than the best on average. AdaBoost.MH was never
the best performer, and on average it was 15% worse than the best.

Figure 5 shows a corresponding comparison, with the LogitBoost and AdaBoost.MH proce-
dures modi�ed to incorporate proportional shrinkage (33), with the shrinkage parameter set to
the same (default) value � = 0:1 used with LK TreeBoost. Here one sees a somewhat di�erent
picture. Both LogitBoost and AdaBoost.MH bene�t substantially from shrinkage. The perfor-
mance of all three procedures is now nearly the same, with LogitBoost perhaps having a slight
advantage. On average its error{rate was 0.5% worse that the best; the corresponding values
for LK TreeBoost and AdaBoost.MH were 2.3% and 3.9%, respectively. These results suggest
that the relative performance of these methods is more dependent on their aggressiveness than
on their structural di�erences. LogitBoost has an additional internal shrinkage associated with
stabilizing its pseudo{response (30) when the denominator is close to zero (FHT98, pg.18). This
may account for its slight superiority in this comparison. In fact, when increased shrinkage is
applied to LK TreeBoost (� = 0:05) its performance improves, becoming identical to that of
LogitBoost shown in Fig. 5. It is likely that when the shrinkage parameter is carefully tuned for
each of the three methods, there would be little performance di�erential between them.

7 Tree boosting

The GradientBoost procedure (Algorithm 1) has two primary meta{parameters, the number of
iterations M and the shrinkage parameter � (33). These are discussed in Section 5. In addition
to these, there are the meta{parameters associated with the procedure used to estimate the
base learner h(x; a). The primary focus of this paper has been on the use of best{�rst induced
decision trees with a �xed number of terminal nodes, L. Thus, L is the primary meta{parameter
of this base learner. The best choice for its value depends most strongly on the nature of the
target function, namely the highest order of the dominant interactions among the variables.

20

0.
25

0.
30

0.
35

0.
40

0.
45

LK_TreeBoost LogitBoost(0.1) AdaBoost(0.1)

Error-rate

1.
00

1.
02

1.
04

1.
06

1.
08

1.
10

1.
12

1.
14

LK_TreeBoost LogitBoost(0.1) AdaBoost(0.1)

Rel. error-rate

Figure 5: Distribution of error{rate on a �ve{class problem (left panel), and error{rate relative to
the best (right panel), for LK TreeBoost, and with proportional shrinkage applied to LogitBoost
and RealAdaBoost. Here the performance of all thee methods is similar.

Consider an \ANOVA" expansion of a function

F (x) =
X
j

fj(xj) +
X
j;k

fjk(xj ; xk) +
X
j;k;l

fjkl(xj ; xk ; xl) + � � �: (38)

The �rst sum is called the \additive" or \main e�ects" component of F (x). It consists of a sum
of functions that each depend on only one input variable. The particular functions ffj(xj)g

N
1

are those that provide the closest approximation to F (x) under this additive constraint. The
second sum consists of functions of pairs of input variables. They are called the two{variable
\interaction e�ects". They are chosen so that along with the main e�ects they provide the
closest approximation to F (x) under the limitation of no more than two{variable interactions.
The third sum represents three{variable interaction e�ects, and so on.

The highest interaction order possible is limited by the number of input variables n. How-
ever, especially for large n, many target functions F �(x) encountered in practice can be closely
approximated by ANOVA decompositions of much lower order. Only the �rst few terms in
(38) are required to capture the dominant variation in F �(x). In fact, considerable success is
often achieved with the additive component alone (Hastie and Tibshirani 1990). Purely addi-
tive approximations are also produced by the \naive"{Bayes method (Warner, Toronto, Veasey
and Stephenson 1961), which is often highly successful in classi�cation. These considerations
motivated the bias toward lower{order interactions in the randomly generated target functions
(Section 6.1) used for the simulation studies.

The goal of function estimation is to produce an approximation F̂ (x) that closely matches
the target F �(x). This usually requires that the dominant interaction order of F̂ (x) be similar
to that of F �(x). In boosting decision trees, the interaction order can be controlled by limiting
the size of the individual trees induced at each iteration. A tree with L terminal nodes produces
a function with interaction order at most min(L � 1; n). The boosting process is additive, so
the interaction order of the entire approximation can be no larger than the largest among its
individual components. Therefore, with any of the TreeBoost procedures, the best tree size L

21

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

2 3 6 11 21

Abs. error

1.
0

1.
2

1.
4

1.
6

2 3 6 11 21

Rel. error

Figure 6: Distribution of absolute approximation error (left panel) and error relative to the best
(right panel) for LS TreeBoost with di�erent sized trees, as measured by number of terminal
nodes L. The distribution using the smallest trees L 2 f1; 2g is wider, indicating more frequent
better and worse performance than with the larger trees, all of which have similar performance.

is governed by the interaction order of the target F �(x). This is usually unknown so that L
becomes a meta{parameter of the procedure to be estimated using a model selection criterion
such as cross{validation on a left{out subsample not used in training. However, as discussed
above, it is unlikely that large trees would ever be necessary or desirable.

Figure 6 illustrates the e�ect of tree size on approximation accuracy for the 100 randomly
generated functions (Section 6.1) used in the simulation studies. The experimental setup is the
same as that used in Section 6.2. Shown is the distribution of absolute errors (34) (left panel),
and errors relative to the lowest for each target (right panel), for L 2 f2; 3; 6; 11; 21g. The �rst
value L = 2 produces additive main e�ects components only; L = 3 produces additive and two{
variable interaction terms, and so on. An L terminal node tree can produce interaction levels
up to a maximum of min(L � 1; n), with typical values being less than that, especially when
L� 1 . n.

As seen in Fig. 6 the smallest trees L 2 f1; 2g produce lower accuracy on average, but their
distributions are considerably wider that the others. This means that they produce more very
accurate, and even more very inaccurate, approximations. The smaller trees, being restricted
to low order interactions, are better able to take advantage of targets that happen to be of low
interaction level. However, they do quite badly when trying to approximate the high order inter-
action targets. The larger trees L 2 f6; 11; 21g are more consistent. They sacri�ce some accuracy
on low order interaction targets, but do much better on the higher order functions. There is
little performance di�erence among the larger trees, with perhaps some slight deterioration for
L = 21. The L = 2 trees produced the most accurate approximation 8 times; the corresponding
numbers for L 2 f3; 6; 11; 21g were 2, 30, 31, 29 respectively. On average the L = 2 trees had
errors 23.2% larger than the lowest for each target, while the others had corresponding values of
16.4%, 2.4%, 2.2%, and 3.7% respectively. Higher accuracy should be obtained when the best
tree size L is individually estimated for each target.

22

8 Interpretation

In many applications it is useful to be able to interpret the derived approximation F̂ (x). This
involves gaining an understanding of those particular input variables that are most in
uential
in contributing to its variation, and the nature of the dependence of F̂ (x) on those in
uential
inputs. To the extent that F̂ (x) at least qualitatively re
ects the nature of the target function
F �(x) (1), such tools can provide information concerning the underlying relationship between the
inputs x and the output variable y. In this section, several tools are presented for interpreting
TreeBoost approximations. Although they can be used for interpreting single decision trees, they
tend to be more e�ective in the context of boosting (especially small) trees. The interpretative
tools described in this section are illustrated in Section 9 in the context of real data examples.

8.1 Relative importance of input variables

Among the most useful descriptions of an approximation F̂ (x) are the relative in
uences Jj , of

the individual inputs xj , on the variation of F̂ (x) over the joint input variable distribution. One
such measure is

Jj =

0@Ex "@F̂ (x)
@xj

#2
� varx[xj]

1A1=2

: (39)

For piecewise constant approximations produced by decision trees, (39) does not strictly exist
and it must be approximated by a surrogate measure that re
ects its properties. Breiman et al

1983 proposed

Ĵ2j (T) =

L�1X
t=1

Î2t 1(vt = j) (40)

where the summation is over the non{terminal nodes t of the L{terminal node tree T , vt is the
splitting variable associated with node t, and Î2t is the corresponding empirical improvement
in squared{error (32) as a result of the split. The right{hand{side of (40) is associated with
squared{in
uence so that its units correspond to those of (39). Breiman et al 1983 used (40)
directly as a measure of in
uence, rather than squared{in
uence. For a collection of decision
trees fTmg

M
1 , obtained through boosting, (40) can be generalized by its average over all of the

trees

Ĵ2j =
1

M

MX
m=1

Ĵ2j (Tm) (41)

in the sequence.
The motivation for (40) (41) is based purely on heuristic arguments. As a partial justi�cation

we show that it produces expected results when applied in the simplest context. Consider a linear
target function

F �(x) = a0 +

nX
j=1

ajxj (42)

where the covariance matrix of the inputs is a multiple of the identity

Ex
�
(x� �x)(x � �x)T

�
= cIn:

In this case the in
uence measure (39) produces

Jj = jaj j: (43)

23

Table 2 shows the results of a small simulation study similar to those in Section 6, but with
F �(x) taken to be linear (42) with coe�cients

aj = (�1)jj; (44)

and a signal to noise ratio of 1/1 (37). Shown are the mean and standard deviation of the
values of (40) (41) over ten random samples, all with F �(x) given by (42) (44). The in
uence
of the estimated most in
uential variable j� is arbitrarily assigned the value Jj� = 100, and the
estimated values of the others scaled accordingly. The estimated importance ranking of the input
variables was correct on every one of the ten trials. As can be seen in Table 2, the estimated
relative in
uence values are consistent with those given by (43) and (44).

Table 2

Estimated mean and standard deviation of input variable relative in
uence for a linear target
function.

Var. Mean Std.

10 100:0 0:0
9 90:3 4:3
8 80:0 4:1
7 69:8 3:9
6 62:1 2:3
5 51:7 2:0
4 40:3 4:2
3 31:3 2:9
2 22:2 2:8
1 13:0 3:2

In Breiman et al 1983, the in
uence measure (40) is augmented by a strategy involving sur-
rogate splits intended to uncover the masking of in
uential variables by others highly associated
with them. This strategy is most helpful with single decision trees where the opportunity for
variables to participate in splitting is limited by the size L of the tree in (40). In the context of
boosting however, the number of splitting opportunities is vastly increased (41), and surrogate
unmasking is correspondingly less essential.

8.2 Partial dependence plots

Visualization is one of the most powerful interpretational tools. Graphical renderings of the value
of F̂ (x) as a function of its arguments provides a comprehensive summary of its dependence
on the joint values of the input variables. Unfortunately, such visualization is limited to low
dimensional arguments. Functions of a single real{valued variable F̂ (x) can be plotted as a graph
of the values of F̂ (x) against each corresponding value of x. Functions of a single categorical
variable can be represented by a bar{plot, each bar representing one of its values, and the bar
height the value of the function. Functions of two real{valued variables can be pictured using
contour or perspective mesh plots. Functions of a categorical variable and another variable (real
or categorical) are best summarized by a sequence of (\trellis") plots, each one showing the
dependence of F̂ (x) on the second variable, conditioned on the respective values of the �rst
variable (Becker and Cleveland 1996).

Viewing functions of higher dimensional arguments is more di�cult. It is therefore useful to
be able to view the partial dependence of the approximation F̂ (x) on selected small subsets of
the input variables. Although a collection of such plots can seldom provide a comprehensive

24

depiction of the approximation, it can often produce helpful clues, especially when F̂ (x) is
dominated by low order interactions (Section 7).

Let zl be a subset, of size l, of the input variables x

zl = fz1; � � �; zlg � fx1; � � �; xng;

and znl be the complement subset

znl [zl = x:

If one conditions on speci�c values for the variables in znl, then F̂ (x) can be considered as a
function only of the variables in the chosen subset zl

F̂znl(zl) = F̂ (zl j znl) = F̂ (x): (45)

In general, the functional form of F̂znl(zl) will depend on the particular values chosen for znl. If
however, this dependence is not too strong then the average function

�Fl(zl) = Eznl [F̂ (x)] =

Z
F̂ (x) pnl(znl) dznl (46)

can represent a useful summary of the \partial dependence" of F̂ (x) on the chosen variable
subset zl. Here pnl(znl) is the marginal probability density of znl

pnl(znl) =

Z
p(x) dzl;

where p(x) is the joint density of all of the inputs x. In the special cases where the dependence
of F̂ (x) on zl is additive

F̂ (x) = F̂l(zl) + F̂nl(znl); (47)

or multiplicative

F̂ (x) = F̂l(zl) � F̂nl(znl); (48)

the form of F̂znl(zl) (45) does not depend on the joint values of the compliment variables znl.

Then �Fl(zl) (46) provides a complete description of the nature of the variation of F̂ (x) on the
chosen input variable subset zl.

An alternative way of summarizing the dependence of F̂ (x) on a subset zl is to directly model
F̂ (x) as a function of zl on the training data

~Fl(zl) = Ex[F̂ (x) j zl] =

Z
F̂ (x) p(znl j zl) dznl: (49)

However, averaging over the conditional density in (49), rather than the marginal density in
(46), causes ~Fl(zl) to re
ect not only the dependence of F̂ (x) on the selected variable subset zl,
but in addition, apparent dependencies induced solely by the associations between them and the
complement variables znl. For example, if the contribution of zl happens to be additive (47) or

multiplicative (48), ~Fl(zl) (49) would not evaluate to the corresponding term or factor F̂l(zl),
unless the joint density p(x) happened to be the product

p(x) = pl(zl) � pnl(znl): (50)

For decision trees based on single{variable splits, the partial dependence of F̂ (x) on a speci�ed
input variable subset zl (46) is straightforward to evaluate on the training data. Given a set
of speci�c values for the variables in zl a weighted traversal of the tree is performed. At the

25

root of the tree, a weight value of one is assigned. For each non{terminal node visited, if its
split variable is in zl the appropriate left or right daughter node is visited, and the weight is
not modi�ed. If the node's split variable is a member of the complement subset znl, then both
daughters are visited and the current weight is multiplied by the fraction of training observations
that went left or right respectively at that node.

Each terminal node visited during the traversal is assigned the current value of the weight.
When the tree traversal is complete, the value of �Fl(zl) is the corresponding weighted average
of the F̂ (x) values over those terminal nodes visited during the tree traversal. For a collection
of M decision trees, obtained through boosting, the results for the individual trees are simply
averaged.

For purposes of interpretation through graphical displays, input variable subsets of low car-
dinality (l � 2) are most useful. The most informative such subsets would likely be comprised
of the input variables deemed to be among the most in
uential (40) (41) in contributing to the
variation of F̂ (x). Illustrations are provided in Section 9.

The closer the dependence of F̂ (x) on the subset zl is to being additive (47) or multiplicative
(48), the more completely the partial dependence function �Fl(zl) (46) captures the nature of
the in
uence of the variables in zl on the derived approximation F̂ (x). Therefore, subsets zl
that group together those in
uential inputs that have complex (nonfactorable (48)) interactions
between them will provide the most reveling partial dependence plots. As a diagnostic, both
�Fl(zl) and �Fl(znl) can be separately computed for candidate subsets. The value of the multiple

correlation over the training data between F̂ (x) and f �Fl(zl); �Fnl(znl)g and/or �Fl(zl) � �Fnl(znl)

can be used to gauge the degree of additivity and/or factorability of F̂ (x) with respect to a
chosen subset zl. As an additional diagnostic, F̂znl(zl) (45) can be computed for a small number
of znl{values randomly selected from the training data. The resulting functions of zl can be

compared to �Fl(zl) to judge the variability of the partial dependence of F̂ (x) on zl, with respect
to changing values of znl.

9 Real data

In this section the TreeBoost regression algorithms are illustrated on two moderate sized data
sets. The results in Section 6.4 suggest that the properties of the classi�cation algorithm
LK TreeBoost are very similar to those of LogitBoost, which was extensively applied to data in
FHT98. The �rst (scienti�c) data set consists of chemical concentration measurements on rock
samples, and the second (demographic) is sample survey questionnaire data. Both data sets
were partitioned into a learning sample consisting of two{thirds of the data, with the remaining
data being used as a test sample for choosing the model size (number of iterations M). The
shrinkage parameter (33) was set to � = 0:1.

9.1 Garnet data

This data set consists of a sample of N = 13317 garnets collected from around the world (Gri�n
et al 1997). A garnet is a complex Ca{Mg{Fe{Cr silicate that commonly occurs as a minor
phase in rocks making up the Earth's mantle. The variables associated with each garnet are the
concentrations of various chemicals and the tectonic plate setting where the rock was collected

(TiO2, Cr2O3, FeO, MnO, MgO, CaO, Zn,Ga, Sr,Y, Zr, tec).

The �rst eleven variables representing concentrations are real{valued. The last variable (tec)
takes on three categorical values: \ancient stable shields", \Proterozoic shield areas", and \young
orogenic belts". There are no missing values in these data, but the distribution of many of the
variables tend to be highly skewed toward larger values, with many outliers.

The purpose of this exercise is to estimate the concentration of Titanium (TiO2) as a function
of the joint concentrations of the other chemicals and the tectonic plate index.

26

Table 3

Average{absolute error of LS TreeBoost, LAD TreeBoost, and M TreeBoost on the garnet data
for varying numbers of terminal nodes in the individual trees.

Term. nodes LS LAD M

2 0:58 0:57 0:57
3 0:48 0:47 0:46
4 0:49 0:45 0:45
6 0:48 0:44 0:43
11 0:47 0:44 0:43
21 0:46 0:43 0:43

Table 3 shows the average{absolute error in predicting the output y{variable, relative to the
optimal constant prediction,

A(y; F̂ (x)) =
Ey;x

���y � F̂ (x)
���

Ey jy �median(y)j
; (51)

based on the test sample, for LS TreeBoost, LAD TreeBoost, and M TreeBoost for several values
of the size (number of terminal nodes) L of the constituent trees. Note that this error measure
(51) includes the irreducible error associated with the (unknown) underlying target function
F �(x) (1), so that it will typically be substantially larger than the error (34) in approximating
the target itself.

For all three methods the additive (L = 2) approximation is distinctly inferior to that using
larger trees, indicating the presence of interaction e�ects (Section 7) among the input variables.
Six terminal node trees are seen to be adequate and using only three terminal node trees is seen
to provide accuracy within 10% of the best. The errors of LAD TreeBoost and M TreeBoost
are smaller than those of LS TreeBoost and similar to each other, with perhaps M TreeBoost
having a slight edge. These results are consistent with those obtained in the simulation studies
as shown in Fig. 2 and Fig. 6.

Figure 7 shows the relative importance (40) (41) of the 11 input variables in predicting TiO2

concentration based on the M TreeBoost approximation using six terminal node trees. Ga and
Zr are seen to be the most in
uential with MnO being somewhat less important. The top
three panels of Fig. 8 show the partial dependence (46) of the approximation F̂ (x) on these
three most in
uential variables. The piecewise{constant nature of the approximation is evident,
but not dramatic. The bottom three panels show the partial dependence of F̂ (x) on the three
pairings of these variables. A strong interaction e�ect between Ga and Zr is clearly evident.
F̂ (x) has very little dependence on either variable when the other takes on its smallest values.
As the value of one of them is increased, the dependence of F̂ (x) on the other is correspondingly
ampli�ed. A somewhat smaller interaction e�ect is seen between MnO and Zr.

9.2 Demographic data

This data set consists of N = 9409 questionnaires �lled out by shopping mall customers in the
San Francisco Bay Area (Impact Resources, Inc, Columbus OH 1987). Here we use answers to
the �rst 14 questions, relating to demographics, for illustration. These questions are listed in
Table 4. The data are seen to consist of a mixture of real and categorical variables, each with a
small numbers of distinct values. There are many missing values.

27

0
2
0

4
0

6
0

8
0

1
0
0

Ga Zr MnO Y Zn MgO CaO FeO Cr2O3 Tec Sr

Relative importance

Figure 7: Relative in
uence of the eleven input variables on the target variation for the garnet
data. Ga and Zr are much more in
uential that the others.

Table 4

Variables for the demographic data.

Var Demographic #values Type

1 sex 2 cat
2 martial status 5 cat
3 age 7 real
4 education 6 real
5 occupation 9 cat
6 income 9 real
7 years in BA 5 real
8 dual incomes 2 cat
9 number in household 9 real
10 number in household <18 9 real
11 householder status 3 cat
12 type of home 5 cat
13 ethnic classi�cation 8 cat
14 language in home 3 cat

We illustrate TreeBoost on these data by modeling income as a function of the other 13
variables. Table 5 shows the average{absolute error in predicting income, relative to the best
constant predictor (51), for the three regression TreeBoost algorithms.

28

T
iO

2

2 4 6 8 10 12 14 16

1
2

3
4

5

T
iO

2

0 2 4 6 8 10 12 14

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

T
iO

2

20 30 40 50

1
.8

2
.0

2
.2

2
.4

2
.6

2
.8

3
.0

4
6

8 10 12 14 16

2
4

6
8

10
12

14

 0
2

4
6

8
1
0

T
iO

2

4
6

8 10 12 14 16

20

30

40

50

 0
1

2
3

4
5

6
7

T
iO

2

2
4

6
8 10 12 14

20

30

40

50

 0
1

2
3

4
5

T
iO

2

Ga Zr MnO

Ga
Zr

Ga
MnO

MnO
Zr

Figure 8: Partial dependence plots for the three most in
uential input variables in the garnet
data. Note the di�erent vertical scales for each plot. There is a strong interaction e�ect between
Zr and Ga, and a somewhat weaker one between Zr and MnO.

29

occ hsld mar age edu hme eth lan dinc num sex < 18 yBA

0
20

40
60

80
10

0

Relative importance

Figure 9: Relative in
uence of the 13 input variables on the target variation for the demographic
data. No small group of variables dominate.

Table 5

Average{absolute error of LS TreeBoost, LAD TreeBoost, and M TreeBoost on the
demographic data for varying numbers of terminal nodes in the individual trees.

Term. nodes LS LAD M

2 0:60 0:63 0:61
3 0:60 0:62 0:59
4 0:59 0:59 0:59
6 0:59 0:58 0:59
11 0:59 0:57 0:58
21 0:59 0:58 0:58

There is little di�erence in performance among the three methods. Owing to the highly
discrete nature of these data, there are no outliers or long tailed distributions among the real
valued inputs or the output y. There is also very little reduction in error as the constituent tree
size L is increased, indicating lack of interactions among the input variables; an approximation
additive in the individual input variables (L = 2) seems to be adequate.

Figure 9 shows the relative importance of the input variables in predicting income, based on
the (L = 2) LS TreeBoost approximation. There is no small subset of them that dominates.
Figure 10 shows partial dependence plots on the six most in
uential variables. Those for the
categorical variables are represented as bar{plots, and all plots are centered to have zero mean
over the data. Since the approximation is additive (�rst sum in (38)), these plots completely
describe the corresponding contributions fj(xj) of each of these inputs.

30

-1.5 -0.5 0.5 1.0 1.5 -0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0 1.5

1 2 3 4 5 6 7

-2
-1

0
1

1 2 3 4 5 6

-2
-1

0
1

-1.5 -1.0 -0.5 0.0 0.5 1.0

Occupation

Prof./manag.
Sales

Laborer

Clerical
Homemaker

Student

Military

Retired

Unemployed

Household status

Own

Rent

Live with family

Marital status

Married

Live together

Divorced/sep.

Widowed

Single

Age Education Type home

House

Condo

Apartment

Mobile home

Other

Figure 10: Partial dependence plots for the six most in
uential input variables in the demographic
data. Note the di�erent vertical scales for each plot. The abscissa values for age and education are
codes representing consecutive equal intervals. The dependence of income on age is nonmonotonic
reaching a maximum at the value 5, representing the interval 45 - 54 years old.

There do not appear to be any surprising results in Fig. 10. The dependencies for the most
part con�rm prior suspicions and suggest that the approximation is intuitively reasonable.

10 Data Mining

As \o�{the{shelf" tools for predictive data mining, the TreeBoost procedures have some attrac-
tive properties. They inherit the favorable characteristics of decision trees while mitigating many
of the unfavorable ones. Among the most favorable is robustness. All TreeBoost procedures are
invariant under all (strictly) monotone transformations of the individual input variables. For
example, using xj , logxj , e

xj , or xaj as the jth input variable yields the same result. Thus,
the need for considering input variable transformations is eliminated. As a consequence of
this invariance, sensitivity to long tailed distributions and outliers is also eliminated. In ad-
dition, LAD TreeBoost is completely robust against outliers in the output variable y as well.
M TreeBoost also enjoys a fair measure of robustness against output outliers.

Another advantage of decision tree induction is internal feature selection. Trees tend to be
quite robust against the addition of irrelevant input variables. TreeBoost clearly inherits this
property as well.

The principal disadvantage of decision trees is inaccuracy. This is a consequence of the coarse
nature of their piecewise{constant approximations - especially for smaller trees, instability - es-
pecially for larger trees, and the fact that they involve predominately high order interactions.
All of these are mitigated by boosting. TreeBoost procedures produce piecewise{constant ap-
proximations; but, as illustrated in Fig. 8 the granularity is much �ner. TreeBoost enhances
stability by using small trees, and by the e�ect of averaging over many of them. The interaction

31

level of TreeBoost approximations is e�ectively controlled by limiting the size of the individual
constituent trees.

Among the purported biggest advantages of single decision trees is interpretability, whereas
boosted trees are thought to lack this feature. Small trees can be easily interpreted, but due
to instability such interpretations should be treated with caution. The interpretability of larger
trees is questionable (Ripley 1996). TreeBoost approximations can be interpreted using partial
dependence plots in conjunction with the input variable relative importance measure, as illus-
trated in Section 9. While not providing a complete description, they at least o�er some insight
into the nature of the input{output relationship. Although these tools can be used with any
approximation method, the special characteristics of tree based models allow their rapid calcu-
lation. Partial dependence plots can also be used with single decision trees, but as noted above,
more caution is required owing to greater instability.

After sorting on the input variables, the computation of the regression TreeBoost procedures
(LS , LAD , and M TreeBoost) scales linearly with the number of observationsN , the number of
input variables n, and the number of iterationsM . It scales roughly as the logarithm of the size
of the constituent trees L. In addition, the classi�cation algorithm LK TreeBoost scales linearly
with the number of classes K; but it scales highly sub{linearly with the number of iterationsM ,
if in
uence trimming is employed. As a point of reference, applying M TreeBoost to the garnet
data of Section 9.1 (N = 13317, n = 11, L = 6, M = 500) required one minute on a 400Mh
Pentium II computer.

As seen in Section 5, many boosting iterations (M ' 500) can be required to obtain optimal
TreeBoost approximations, based on small values of the shrinkage parameter � (33). This is
somewhat mitigated by the very small size of the trees induced at each iteration. However, as
illustrated in Fig. 1, improvement tends to be very rapid initially and then levels o� to slower
increments. Thus, nearly optimal approximations can be achieved quite early (M ' 100) with
correspondingly much less computation. These near{optimal approximations can be used for
initial exploration and to provide an indication of whether the �nal approximation will be of
su�cient accuracy to warrant continuation. If lack{of{�t improves very little in the �rst few
iterations, it is unlikely that there will be dramatic improvement later on. If continuation is
judged to be warranted, the procedure can be restarted where it left o� previously, so that no
computational investment is lost. Also, one can use larger values of the shrinkage parameter to
speed initial improvement for this purpose. As seen in Fig. 1, using � = 0:25 provided accuracy
within 10% of the optimal (� = 0:1) solution after only 20 iterations. In this case however,
boosting would have to be restarted from the beginning if a smaller shrinkage parameter value
were to be subsequently employed.

The ability of TreeBoost procedures to give a quick indication of potential predictability,
coupled with their extreme robustness, makes them a useful preprocessing tool that can be
applied to imperfect data. If su�cient predictability is indicated, further data cleaning can be
invested to render it suitable for more sophisticated, less robust, modeling procedures.

If more data become available after modeling is complete, boosting can be continued on
the new data starting from the previous solution. This usually improves accuracy provided an
independent test data set us used to monitor improvement to prevent over�tting on the new
data. Although the accuracy increase is generally less than would be obtained by redoing the
entire analysis on the combined data, considerable computation is saved.

Boosting on successive subsets of data can also be used when there is insu�cient random
access main memory to store the entire data set. Boosting can be applied to \arcbites" of data
(Breiman 1997b) sequentially read into main memory, each time starting at the current solution,
recycling over previous subsets as time permits. Again, it is crucial to use an independent test
set to stop training on each individual subset at that point where the estimated accuracy of the
combined approximation starts to diminish.

32

11 Acknowledgments

Helpful discussions with Trevor Hastie, Bogdan Popescu, and Robert Tibshirani are gratefully
acknowledged. This work was partially supported by CSIRO Mathematical and Information
Sciences, Australia, the Department of Energy under contract DE-AC03-76SF00515, and by
grant DMS9764431 of the National Science Foundation.

References

[1] Becker, R. A. and Cleveland, W. S (1996). The design and control of Trellis display. J.
Comput. & Statist. Graphics 5, 123{155.

[2] Breiman, L. (1997a). Prediction games and arcing algorithms. Univ. of Calif., Berkeley,
Dept. of Statistics, Technical Report 504. Submitted to Neural Computing.

[3] Breiman, L. (1997b). Pasting bites together for prediction in large data sets and on{line.
Univ. of Calif., Berkeley, Dept. of Statistics technical report.

[4] Breiman, L., Friedman, J. H., Olshen, R., and Stone, C. (1983). Classi�cation and Regres-

sion Trees. Wadsworth.

[5] Copas, J. B. (1983). Regression, prediction, and shrinkage (with discussion). J. R. Statist.
Soc. B 45, 311{354.

[6] Donoho, D. L. (1993). Nonlinear wavelete methods for recovery of signals, densities, and
spectra from indirect and noisy data. In Di�erent Perspectives on Wavelets, Proc. of Symp.

in Applied mathematics, I. Daubechies (ed.) v. 47, Amer. math. Soc., Providence R. I.,
173{205.

[7] Drucker, H. (1997). Improving regressors using boosting techniques. Proceedings of the
Fourteenth International Conference on Machine Learning. ed. D. Fisher, Jr., pp. 107{115.
Morgan{Kaufmann.

[8] Du�y, N. and Helmbold, D. (1998). A geometric approach to leveraging weak learners.
University of California, Santa Cruz, technical report (to appear in EuroColt 99, Springer
Verlag).

[9] Freund, Y and Schapire, R. (1996). Experiments with a new boosting algorithm. InMachine

Learning: Proceedings of the Thirteenth International Conference, 148{156.

[10] Friedman, J. H. (1991). Multivariate adaptive regression splines (with discussion). Annals
of Statistics 19(1), 1{141.

[11] Friedman J. H., Hastie, T, and Tibshirani, R. (1998). Additive logistic regression: a statis-
tical view of boosting. Stanford University, Dept. of Statistics, Technical Report.

[12] Gri�n, W. L., Fisher, N. I., Friedman J. H., Ryan, C. G. and O'Reilly, S. (1997). Cr{Pyrope
garnets in lithospheric mantle. J. Petrology (to appear).

[13] Hastie, T. and Tibshirani, R (1990). Generalized Additive Models. Chapman & Hall.

[14] Huber, P. (1964). Robust estimation of a location parameter. Annals of Mathematical Statis-

tics, 35, 73{101.

[15] Mallat, S. and Zhang, Z (1993). Matching pursuits with time frequency dictionaries. IEEE
Transactions on Signal Processing 41, 3397{3415.

33

[16] Powell, M. J. D. (1987). Radial basis functions for multivariate interpolation: a review.
In Algorithms for Approximation, eds. J. C. Mason and M. G. Cox, pp 143{167. Oxford:
Clarendon Press.

[17] Ratsch, G., Onoda, T., and Muller, K. R. (1998). Soft margins for AdaBoost. Technical
Report NC-TR-1998-021, NeuroCOLT2.

[18] Ripley, B. D. (1996). Pattern Recognition and Neural networks. Cambridge University Press.

[19] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by
back{propagating errors. Nature 323, 533{536.

[20] Schapire, R. and Singer, Y. (1998). Improved boosting algorithms using con�dence{rated
predictions. In Proceedings of the Eleventh Annual Conference on Computational Learning

Theory.

[21] Quinlan, J. R. (1993). C4.5: Programs for machine Learning. Morgan Kaufmann.

[22] Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer.

[23] Warner, J. R., Toronto, A. E., Veasey, L. R. and Stephenson, R. (1961). A mathematical
model for medical diagnosis { application to congenital heart disease. J. Amer. Med. Assoc.

177, 177{184.

34

	Block:

