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Introduction 

Normal probability plots are often used as an informal means of assessing the non-
normality of a set of data. One problem confronting persons inexperienced with 
probability plots is that considerable practice is necessary before one can learn to judge 
them with any degree of confidence. Some objective measure of the straightness of a 
probability plot would he helpful, especially for students just beginning their statistical 
education.  

One rather obvious way to judge the near linearity of any plot is to compute its 
"correlation coefficient." When this is done for normal probability plots, a formal test can 
be obtained that is essentially equivalent to the powerful Shapiro-Wilk test W and its 
approximation W. This note is basically an exposition of the utility of this simple yet 
powerful procedure.  

An Example 

Figure 1 shows a normal probability plot of 70 IQ scores that were obtained as a 
covariate in a study concerning the relative effectiveness of color versus black and white 
visual materials. This particular plot provides an example of the need for a simple 
objective way to assess the straightness of probability plots. This plot may seem curved 
enough at the ends to cast serious doubt upon the hypothesis on normality. However, the 
"correlation coefficient" of this plot was 0.990, which is not significant at a = 0.10 
(critical value = 0.9856). In fact, plots as curved as this occur fairly often with normal 
data (see, e.g., [6]). Of course, there can still be practically significant departures from 
normality, even though the hypothesis of normality is not rejected.  



 

Figure 1: Normal Probability Plot of IQ Scores of 70 Students 
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More Details 

A normal probability plot (see, e.g., [6], [8], or [19]) is basically a plot of the ordered 
observations from a sample against the corresponding percentage points from the 
standard normal distribution. If we denote the ordered observations in a sample of size n 
by {Yi}, then a normal probability plot can be produced by plotting the Yi on normal 

"probability" graph paper against some simple function like or pi .  

Using the special graph paper is equivalent to plotting the {Yi} on standard arithmetic 
graph paper against {bi} where bi is the pith percentage point of the standard normal 
distribution. That is, . 

If the data come from a normal distribution, they will fall on an approximately straight 
line, whereas if they come from some alternative distribution, the plot will exhibit some 
degree of curvature. If the data fall nearly on a straight line, the "correlation coefficient" 
will be near unity, whereas if the plot is curved, the "correlation coefficient" will be 
smaller. If it falls below an appropriate critical value, doubt will be cast on the null 
hypothesis of normality. Thus the "probability plot correlation coefficient" version of the 
Shapiro-Wilk test is given by the familiar formula for a correlation coefficient, namely  



 

Since = 0, Rp can be simplified to  

, or  

where s2 denotes the sample variance. 

Filliben [9, 10] suggested plotted the {Yi} against {Ci} where Ci is the median of the ith 
order statistic in samples from the standard normal distribution. The Ci may also be 
viewed as F-1(pi) where pi is the median of the ith order statistic in samples from the 
uniform distribution. For simplicity of computation, we suggest the use of pi or pi rather 
than pi since it does not appear to make any practical difference. Either test has the highly 
desirable feature of linking together a graphical display of the data with a simple, 
objective test statistic. 

Some may object to the use of the term "correlation coefficient" since the {bi} are not 
random variables. However, another view is that, given any set of points in the plane, one 
can use the "correlation coefficient" associated with those points as a descriptive measure 
of how close they are to a straight line. In this sense, Rp can be thought of as a correlation 
coefficient. However, since Rp does not arise from sampling a bivariate distribution, it is 
not the same as the usual correlation coefficient. In fact, since both {bi} and {Yi} are 
ordered, Rp 0, and, in most practical cases, Rp is very large, even if the Yis come from a 
non-normal population. 

A very useful approximation for making probability plots and/or computing Rp is [17, 
12]  

 

A slightly more accurate approximation is [11] 

, 

where u = [-2 log e (p i )], and (g 0 , g 1 , ..., g 5 ) = (2.515517; 0.802853; 0.010328; 1.432788; 0.189269; 0.001308).  

Either of these approximations is adequate. Use of these simple formulas in computer 
programs obviates the need to store the large tables of coefficients required for W and W.  



Relationship to Shapiro-Wilk and Shapiro-Francia 
Tests 
There is a very close relationship between R and the Shapiro-Wilk [16] test W and the 
Shapiro-Francia [15] approximation W. In fact, can be viewed as the "correlation 
coefficient" of a probability plot in which the expected values of the standardized normal 
order statistics mi are used as plotting positions rather than the normal percentage points 
bi. Similarly, is proportional to the "correlation coefficient" associated with a 
probability plot in which the plotting positions are the coefficients ai of the "best linear 
unbiased estimate" (BLUE) of the standard deviation σ . Since the expected values of the 
normal order statistics, the normal percentage points and the (scaled) BLUE coefficients 
are all quite similar (see, e.g., Table 1), similar properties should be expected among the 
three statistics W, W, and Rp. This indeed turns out to be the case as shown in the section 
entitled Power. Note in particular in Table 1 that the coefficients for W and Rp are in 
especially close agreement. The closeness of these three test statistics can also be 
anticipated from the theory of BLUEs and their approximations (see, e.g., [7]). 

Table 1: Coefficients for the Three Tests W, W and Rp for n = 20. 

Test:  Rp W W     
  Coefficients Ratios 
i bi mi ai 4.4122 m i bi (ai 4.4122) bi 
11. 0.0619 0.0620 0.0618 1.0011 0.9979 
12. 0.1867 0.1870 0.1862 1.0013 0.9971 
13. 0.3146 0.3149 0.3137 1.0011 0.9972 
14. 0.4478 0.4483 0.4470 1.0012 0.9983 
15. 0.5895 0.5903 0.5886 1.0014 0.9986 
16. 0.7441 0.7454 0.7439 1.0017 0.9997 
17. 0.9191 0.9210 0.9199 1.0020 1.0008 
18. 1.1281 1.1310 1.1317 1.0025 1.0032 
19. 1.4034 1.4076 1.4168 1.0030 1.0095 
20. 1.8683 1.8675 2.0887 0.9996 1.1180 

Correlation between (all 20) bi and mi values = 1.0000.  

Correlation between (all 20) bi and ai values = 0.9986.  

Thus, Rp is basically a new way of viewing very good established procedures. Rp is easy 
to explain to students in an elementary statistics course and to researchers from other 
fields, since it is linked to a graphical technique (probability plots) and is based on a 
technique taught early in most courses (correlation coefficient).  



In addition, Rp is very easy to calculate, especially on a computer, since no special tables 
are required for its computation. And the critical values needed to complete the test can 
be easily calculated using formula (1) in the section entitled Critical Values. For example, 
in Minitab [14] there is a command called NSCORES that computes the bi (normal 
scores) for any sample size. The following brief program reads in a batch of data, 
computes the normal scores, does a probability plot, and computes Rp. Note that no new 
commands need to be added to the system to compute Rp. 

 
 
SET THE FOLLOWING IQ SCORES INTO COLUMN C1 
(data come here) 
NSCORES FOR DATA IN COL C1, PUT IN COL C2 
PLOT COL C1 VS COL C2 (PROBABILITY PLOT)  
CORRELATION BETWEEN C1 AND C2 (R-SUB-P)  
STOP 

This program produced the plot in Figure 1.  

The critical importance of linking together graphical displays with objective test statistics 
cannot be overemphasized. This advantage is theoretically available with W and W but 
their use in this connection and their relationship with the "correlation coefficient" of 
normal probability plots has not previously been noted. In fact, when W was introduced 
[16] as a test based on the ratio of two estimates of variance, the authors stated that 
"Heuristic considerations augmented by some fairly extensive empirical sampling results 
suggest that the mean values of W for non-null distributions tends to shift to the left of 
that for the null case." Had the authors noted the connection with the "correlation 
coefficient" on a normal probability plot, it would have been apparent why low values of 
W, and thus low correlations, would have been indicative of non-normality. 

Critical Values  
Approximate critical values of Rp were obtained from Monte Carlo simulations using 
Chen’s [3] algorithm to obtain the random normal samples. Five hundred independent 
random samples were generated for each value of n between 11 and 77, and 3500 
samples were generated for each value of n between 3 and 10. The empirical critical 
values were computed for α = 0.10, 0.05, and 0.01. The results were then smoothed for 
each value of α using a function of the form 

.              (1) 

There was no detectable lack of fit using these functions, so it would appear that the 
simple approximations listed in Table 2 give critical values yielding α accurate to within  
0.007 for = 0.10; to within 0.005 for = 0.05; and to within 0.002 for = 0.01. These 
uncertainties represent estimated limits to the error in α and are computed from upper 



bounds to twice the standard error of the fitted values using weighted least squares fits of 
(1). 

  

Table 2: Approximate critical values for Rp. 

n  α = 0.10  α = 0.05  α = 0.01  

4  .8951  .8734  .8318  

5  .9033  .8804  .8320  

10  .9347  .9180  .8804  

15  .9506  .9383  .9110  

20  .9600  .9503  .9290  

25  .9662  .9582  .9408  

30  .9707  .9639  .9490  

40  .9767  .9715  .9597  

50  .9807  .9764  .9664  

60  .9835  .9799  .9710  

75  .9865  .9835  .9757 

Approximate critical values for intermediate values of n are given by the following 
equations: 

, for α = 0.10; 

, for α = 0.05; 

, for α = 0.01. 

Limiting "Correlations"  
The most important question is usually not "Is the population normal?" because we 
already know that no real population is exactly normal. Rather, the important questions 
are "How non-normal is the population?" and "How much is the non-normality going to 
hurt?". The statistic Rp can be used to provide an indication of the answer to the first of 
these questions. This will be particularly true with larger samples. Thus it will be useful 
to have a means of interpreting Rp asymptotically. 



If increasingly larger samples are drawn from some alternative distribution F, the test 
statistic Rp converges in probability to the "limiting correlation" 

 

where σ F is the standard deviation of F. Roughly, ρ (F, Φ ) may be viewed as the 
"correlation" between the two distributions F and Φ associated with the plot of F-1(x) 
versus Φ -1(x). It is also instructive to think of Rp as a sample estimate of ρ (F, Φ ). In this 
way, Rp can be used as an estimate of how far the population is from normality. Use of 
this procedure in conjunction with the normal probability plots of alternative distribution 
functions, as given by Chambers and Fowlkes [2], might be particularly informative. In 
addition, ρ (F, Φ ) is useful as an indicator of what sort of power one can expect of Rp, as 
will be seen in the following section. 

To make the concept of a distance from normality more precise, we can define a metric 
based on ρ . If F and G are any two distributions, then we define 

 

where µ F, µ G, σ F2, and σ G2 are the means and variances of F and G. Then 

is a distance function between classes of distribution functions 
where two distributions are in the same class if they differ only in location and scale 
parameters. It is routine to verify that d(F, G) is non-negative, is zero if and only if F and 
G are in the same class, and is symmetric. The triangle inequality is readily established 
using the fact that for any random variables X1, X2, X3, 

 

Hence, d(F, Φ ) may be used as a measure of distance from normality and may 
be used as an estimate of this distance. Limiting "correlations" for some alternative 
distributions are given in Table 3. 



 

Table 3: Limiting correlations between the normal distribution and selected alternative 
distributions. 

Distribution ρ (F, Φ )  

Uniform  0.9770 

Right Triangle  0.9730 

Exponential  0.9025  

Weibull (c=2)  0.9857  

t with 3 d.f.  0.9082  

t with 5 d.f.  0.9841 

Power  
To obtain estimates of the power of Rp, and more particularly, of the difference in power 
between Rp and W, additional computer simulations were performed. Using the uniform 
random number generator of Lewis et. al. [13], 500 sets of data of size n = 10 and n = 20 
were simulated for each alternative distribution listed in Table 4. The notation for the 
contaminated normals may be explained in term of the entry (0.10, 5), which means that 
with probability 0.10 an observation was drawn from a normal distribution with σ = 5 
and with probability 0.90 from a normal distribution with σ = 1, always with µ = 0. The 
empirical power of Rp and W were then computed for these alternatives. The alternative 
distributions considered are essentially a subset of those investigated by Shapiro, Wilk, 
and Chen [17] and Chen [4]. 



Table 4: Empirical power of Rp and W for selected alternative distributions (α = 0.10) 

  (power x 100) 

  n = 10 n = 20 

Distribution Rp W Rp W 

Uniform  13 18 20  37 

Right Triangle  21 22 33  46 

Exponential  53 54 89  90 

Weibull (c = 2)  13 12 21  25 

Weibull (c = 0.5)  93 94 100  100 

Lognormal (σ = 1)  66 67 96  97 

Cauchy  73 68 91  88 

Contaminated Normal (0.10, 5)  42 41 62  59 

Contaminated Normal (0.05, 5)  29 27 41  41 

Contaminated Normal (0.10, 3)  23 20 38  33 

Contaminated Normal (0.05, 3)  18 17 28  27 

The standard error of the power figures for Rp and W shown in Table 4 is always less 
than 0.025. The power values for W reported here agree well with those reported 
previously except for the Cauchy distribution with n = 10 where the value reported by 
Shapiro, Wilk, and Chen [17] appears to be too low. Since identical data sets were used 
in obtaining the empirical power functions of the two tests, the comparisons between Rp 
and W indicated in Table 4 are substantially more accurate. Table 4 shows that overall 
there is little difference between the powers of the two tests for most of the alternatives 
reported. The only appreciable difference is that for extremely short-tailed distributions 
like the uniform and triangular, W has more power than Rp, while for heavy-tailed 
distributions like the Cauchy and contaminated normals, Rp does slightly better. This 
difference in the (scaled) coefficients for the two statistics W and Rp is seen to be for the 
largest and smallest observations, where the ai values are more extreme than the bi values. 
Thus, the ai values will tend to agree better with samples from long-tailed distributions, 
and therefore give W less power than Rp. Conversely, the ai values will tend to disagree 
more with short-tailed samples and thus give W better power there. Since the mi 
coefficients for W are nearly identical to the bi values used for Rp, one would expect that 
the properties of W and Rp would agree even more closely than those for W and Rp. This 
appears to be the case, with the statistics and Rp agreeing to 3 decimal places in all 
samples observed. 



A comparison between the limiting "correlations" in Table 3 and the corresponding 
power values in Table 4 suggests that ρ (F, Φ ) does provide a useful indication of the 
non-normality of an alternative distribution function. 

Concluding Remarks  

The notion of using the familiar correlation coefficient as a means of judging the 
straightness of a normal probability plot is intuitively appealing. This test has the virtues 
of being simple, easily remembered, and powerful. It encourages the use and comparison 
of a visual test (the probability plot) with an objective measure (Rp). This test can also be 
used to provide an intuitive explanation of why the Shapiro-Wilk and the Shapiro-Francia 
tests work. 

All four tests mentioned here (Filliben’s, W, W , and Rp) are intrinsically location and 
scale invariant and are thus readily usable against composite alternatives. The can also be 
used in the manner described by Wilk and Shapiro [20] to jointly assess the normality of 
several small data sets. 

It would be each to extend Rp for use with censored samples. New tables of critical 
values would be required, but the basic procedure would be to simply omit the bis 
corresponding to the censored observations, and compute the "correlation" between the 
observed Yi and the corresponding bi. The other tests could be extended in a similar 
fashion if viewed as "correlation coefficients." 

The whole procedure can be extended to almost any other distribution, F. Simply 
compute F-1(pi) and their correlation with the Yi. A brief exploratory study of this 
extension to the exponential distribution has indicated that Rp may not be as powerful in 
that case as the exponential version of the W test. Thus the general efficacy of extending 
Rp to other situations remains in doubt. 
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Note on a Test for Normality  
Thomas A. Ryan, Jr. 

October 4, 1990 

This note updates the 1974 technical report that I wrote with Brian Joiner concerning 
using a correlation coefficient associated with a normal probability plot as a test for 
normality. As you would expect, there is a better, more recent reference for this test. 
Goodness-of-Fit Techniques, edited by Ralph B. D’Augostino and Michael A. Stevens 
(Dekker, 1986) describes this test in some detail, and provides a table that can be used to 
construct critical values for the test for n from 10 to 1000. See pages 195–205 (especially 
Section 5.7 and the table on page 203). 

There is very good agreement between our critical values and those in D’Augostino and 
Stevens. Transforming their table gives the results below, along with our table for 
comparison. (I now believe, based on graphical displays, that the .01 critical value for n = 
4 may be wrong.) (D’Augostino and Stevens also give results for other levels of alpha.) 

 D’Augostino and Stevens  Joiner and Ryan 
alpha 0.10 0.05 0.01 0.10 0.05 0.01

N 4 – – – 0.8951 0.8734 0.8318
5 – – – 0.9033 0.8804 0.8320

10 0.9349 0.9176 0.8792 0.9347 0.9180 0.8804
15 – – – 0.9506 0.9383 0.9110
20 0.9602 0.9511 0.9270 0.9600 0.9503 0.9290
25 – – – 0.9662 0.9582 0.9408
30 – – – 0.9707 0.9639 0.9490
40 0.9769 0.9717 0.9579 0.9767 0.9715 0.9597
50 – – – 0.9807 0.9764 0.9664
60 0.9835 0.9799 0.9710 0.9835 0.9799 0.9710
75 – – – 0.9865 0.9835 0.9757
80 0.9871 0.9843 0.9776 – – –

100 0.9894 0.9871 0.9818 – – –
400 0.9969 0.9964 0.9950 – – –
600 0.9979 0.9975 0.9966 – – –

1000 0.9987 0.9984 0.9979 – – –

There is some other material in the technical report that has not, to my knowledge, been 
published anywhere. An example is the asymptotic values of the correlation coefficient 
for alternative distributions. 

 


